
AD AO5G 111 ILLINOIS UNIV AT URSANA—CHAMPAIGN COORDINATED SCIENCE LAB FIG 9/2
-
‘

A COMPUTER HARDWARE DESIGN LANGUAGE FOR MULTIPROCESSOR SYSTEMS. (U)
SEP 77 T N NUDGE DAA BO7—72— C—0 2 59

UNCLASSIFIED R 787 NL

I

_ _ ~~~ _ _ _ _ _Mf~ Ia

I F : ~~~~~~~~~ILNG 77~2234
~~~~~~~~~

I A~~~1! COORDINA TED SCIENCE LABORATORY

A COMPUTER HARDWARE
- DESIGN LANGUAGE FOR
- MULTIPROCESSOR SYSTEMS

>— ~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~

_ _ TREVOR NIGEL NUDGE- I ~~~~~~~~
•
~ /

LL.i
_ _ _

.

c~: _-- .

_ _ _ _ _
_ _

Q ~V4\\

_ __ __ __ _
~~~~~~

_ __ _ __ __ _ _ _  - 
~~

_ _ _ _ _ _ _ _ _  

\\‘~ 
y&~-

c~ .. - ..
~~~ 

-
~~~~.. 

-
~-m

UNIVERSITY OF ILLINOIS - URBANA iLLINOIS
I 78 U7 1O 1~~



~ 
~~~

~~~ 
~~~~~~ 

—

~~~~~~~~~~~~~~~~~UNCLASSIFIED 4~. ~;~1 ~~ 
~ / ) 1

,S ECu RITY C L A S S I F I C A T I O N  OF T HIS PAGE (Wh.n Date V —•::--
~ 

—

0 011D1 l5J~IIIU I J T A T I f l~J ~A~E READ INSTRUCTIONS
~~~~ , ~~~~~~~~~~~~~~ ,~ , ~~ , .

~~
u BEFORE COM PLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RE C I P I E NT S C A T A L O G NUMBER

‘
---_.. ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 5... TYP Eo F PO~~T~~~~~E~~IOo COvEREo

A COMPUTER $ARDWARE DESIGN LANGUAGE FOR h1~114~
Technicai Rep~~ t~~)L 1~ ‘~PR0CESSOR SYSTEMS 1 -•- FI~~1LtWt~~J~ J R-787~ UILU-ENC-~7-2234

7 AUTH‘ “~— ~~ WT WACT OR GRANT NUMBER(s)
—

~~:
~~~~~~~~~~~~~~~~~~~~

9. PERFORM I,~iG O R G A N I Z A T I O N  NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJE CT , T A S K
AREA & WORK UNIT NUMBERS

Coordinated Science Laboratory
University of Illinois at Urbana—Champaign
Urb ana , Ill inois 61801

11 . CONTROLLING OFFICE NAME AND ADDRESS .

(
~ /

Sep~~ ~a;~;7~IIJoin t Services Electronics Program - 1~~. NUMB E R O F PAq.E~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

135 ~~~ i i  / / ~~.j
14 MONITORING AGENCY NAME & AODR ESS( l f  dif ferent front Contro l l ing O f f i c e )  15. SECURITY C L A S S .  (0

ISa D E C L A S S I F I C A T I O N  D O W N G R A D I N G  p
SCHEDULE

16 DISTRIBUTION S T A T E M E N T  (of this Repor t )

Approved for public release ; distribution unlimited

17. D I S T R I B U T I O N  S T A T E M E N T  (of the abstract entered in Block 20 , II dIfferen t from Reporl)

IS. S U P P L E M E N T A R Y  N O T E S

19 KEY WORDS (Conr :nuø on reve rs e  s ide if necessary  and i dp n t l f y  by b lock number)

Computer Hardware Design Language
Dead lock
Asynchronous Systems
Con trol Structures

20 ABSTRACT (Continue on reverse aide If necessary and Iden tify by block number)

— /Fhis thesis develops a computer hardware design language that:
,r11 Has sufficient scope to describe multiprocessing systems., ‘ ,

(2~ Is specified so that syntactically correct programs describe
systems which have deadlock—free control structures.

This , it is shown , is accomplished without resorting to an unduly complex
syntax for the language . —‘

~

OD I JAN~ 48 t~~E
D(}N7 

I NOv1I
~~

)SoLETE1 6 ‘~ UNCLASSIFIED
-. SE C U R I T Y  C L A S S I F I C A T I O N  OF THIS PAG E (I4?,pn 1)515 Fnte,.J

C; j .:~ ‘7~ ~
-_________  - ~~~~~~~~~ — --————- .



—-~ -- --_- --~ -~ ——-—-.~ .
~~~~~

-.----
~~
- - -._ .. --

~~

UNCLASSIFIED
SECURIT y CLA$$IPICATION OP TI4I$ PAOI(W9i ~~, Dali LIt.,.d)

/

The con trol prob lem associated wi th multiprocessing is qui te comp lex ,
and the opportunities for creating a control structure which can hang—up are
great. Specifying the computer hardware design language so that this pit-
f a l l can be avoided by stay ing wi thin the bounds of the syntax , gives the user
a true design tool which is more than just an aid for documenting the
principles of operation of a system.

The computer hardware design language is~~.ap.ab1e of being~,used to design
d igital systems which conform to the following model: the system partitions
into a hierarchically organized asyn chrono us con t rol structure and a da ta
structure . Actions in the data structure are assumed to be representable
as register—transfers . The coordination of these actions is accomplished
by the control structure .

/
II J ~1’ . I —~

Two approaches to~ the implementation of~ the computer hardware design
language programs are discussed. The first is an asynchronous realiza-
tion using asynchronous modules, T’ke second i€ a pseudo—asynchronous
realization r it is a synchronous realization that is viewed as an
asynchronous one.

4 ’

LINCLASS IFIED

SCCUN ITY CLASSI FICATION OP THIS PAGEIWSt.n Data Entered)


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UILU-ENG 77-2234

A COMPUTER HARDWA RE DESIGN LANGUAGE
FOR MULTIPROC ESSOR SYSTEMS

by

Trevor Nigel Mudge

This work was supported in part by the Joint Services

Electronics Program (U.S. Army , U.S. Navy and U.S. Air Force)

under Contract DAAB—07—72—C—0259.

Reproduction in whole or in part i - permitted for any

purpose of the United States Government.

Approved for public release. Distribution unlimited.

~~~~ - I,c 

--- .~~~~~~~. . --~~~~

A CC~1PUTER HARDWARE DES IGN LANGUA(~ FOR
MU LTIPROCESSOR SYSTEMS

BY

TRE VOR NIGEL MUDGE

B.Sc., University of Read ing, 196 9
M.S., University of Illinois , 1973

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign , 1977

Thesis Advisor: Professor Gernot Metze

Urbana , I l l ino is

L

A COMPUTER HARDWARE DESIGN LANGUAGE FOR

MULTIPROCESSOR SYSTEMS

Trevor Nige l Mudgc , Ph.D.
Coordinated Science Labor atory and

Depar tment of Computer Sc ience
University of Illinois at Urbana-Champai gn , 1977

This thesis develops a computer hardvare design language that :

I. Has sufficient scope to describe multiprocessing systems.

2. Is specified so that syntactically correct programs describe

systems which have deadlock-free control structures.

This , it is shown , is accomplished without resorting to an undul y

comp lex syntax for the language .

The control prob lem associated with multiprocessing is quite comp 1*~x ,

and the opportunities for creating a control structure which can hang-up

are great. Spe c if ying the computer hardware design language so that this

pi t f al l can be avo ided by staying within the bounds of the syntax , gives

the user a true design tool which is more than just an aid for documenting

the princ ip les of operation of a system.

The computer hardware design language is capable of being used to

design digital systems which conform to the following model: the system

par titions into a hierarchically organized asy nchron ous cont rol structu re

and a data structure . Actions in the data structure are assumed to be

representable as register-transfers. The coordination of these actions is

accomp l ished by the control structure .

Two approaches to the implementation of the computer hardware design

l anguage programs are discussed. The first is an asynchronous realization

using asynchronous modules. The second is a pseudo-asynchronous realization :

it is a synchronous realizat ion that is viewed as an asynchronous one .

.. - - - -~~~~~~ --,-

iv

~An ounce of prevention is
w o r t h a pound of cure . ”

-Proverb

- -~~~~~~~~~~~~~
-

V

TABLE OF CONTENTS
Page

1. INTRODUCTI ON 1

1.1 The System Model presumed by the CHDL 2
1.2 The Plan of the Thesis 6

2. BEHAVIORAL DESCRIPTIONS OF THE CS MODULE S 8

2.1 The Pe t r i Net Graph 8

2 . 2 The Source Module 13

2 . 3 The Sink Module 14

2 .4 The Wye Module 14
2.5 The Sequence Module 14
2.6 The Trigger Module 18

2 . 7 The Junc t ion Module 20

2 . 8 The Shared Resource Module 20

2 .9 The Mutua l Exc lus ion Module 20

2.10 The Decode Module 24

2. 11 The i t e r a t e Module 26

2 . 1 2 The Behavior of Networks of CS Modul es 26

2 . 1 3 Comments on the Modules 36

3. THE SYNTAX OF THE CHDL 37

4. INTE RP RETING AND TRANSLAT ING PROG RAMS IN THE CHD L 42

4.1 The Process Block 42

4.2 The Decode Process Block 46

4.3 The Mutual Exclusion Process Block 48

4.4 The Trigger Proc ess Bl ock 52

4.5 The While Process Block 52

4.6 The Inter Block Connections 55

4.7 Comments on the Blocks 57

5. AN EXAMPLE DESIGN USING THE CHDL 58

5.1 The Forwarding Algorithm 58

5.2 The CHDL Program for the Examp le Design 63
5.2.1 The MAIN Block 71

5.2.2 The FETCH Block 71

- . - .

- ~~~~~~~~~~~~~~~~~~~~
.- .-

~~~~
--

~~~~~
- - .

V i

Page

5 .2 .3 The EXEC Block 71

5.2.4 The TST Block 72

5.2.5 The Blocks TF1 and TF2 72

5.2.6 The Block s PREDCD I and PREDCD2 73

5.2.7 The Block DBUS 73

5.2.8 The Blocks DECA and DECB 74

5.2.9 The Blocks RAi and RBI 74

5.2.10 The Blocks MVPti and C1-IKA i 75

5.2.11 The Blocks BSYAi and CHKBAi 75

5.2.12 The Blocks MVBi and BSYBi 75

5.2.13 The Blocks DCD&EXI and DCD&EX2 76

5.2.14 The Blocks BCAST1 and BCAST2 76

5.2.15 The Remaining Blocks 76

5.3 Comments on the Examp le De sign 77

6. THE SCOPE OF THE CHDL 78

7. PROOF THAT SYNTACTICALLY CORRECT CHDL PROGRAMS DESCRIBE
SYSTEMS WHICH HAVE DEADLOCK-FREE CSS 80

7.1 The Add i t i ona l Syntax 80

7 . 2 The Proof 81

7 . 3 The Comp lexi ty of Checking the Syntax of a CHD L
Program 88

7.3.1 Check ing a CHDL Program Against the Syntax
of Chapter 3 89

7 .3 .2 Che cking for AS 1 and AS2 93

7.3.3 Checking for AS3 and AS4 95

7.3.4 Checking for ASS and AS6 96

7.3.5 Checking for AS7 and AS8 96

7.3.6 The Overall Comp lexity 97

7.4 Conc luding Comments 97

8. HARDWARE IMP LEME NTATION OF THE CHD L PROGRAMS 100

8.1 Asynchronous Implementation 100

8.2 Pseudo-asynchronous Imp lementat ion 112

_ _ _
—4

vii

Page

9. C OMPARISoN S TO ~ rHE R CHDLS AND OTHER APPLICAT IONS 126

9.1 Other A p p l i c a t i o n s 126
9 .2 Comparisons to Other CHDLs 127

10. CONCLUSION 129

REFERENC ES 131

VITA 135

1

1. iNTRODUCTION

In an attemp t to formalixe the design process for large dig ital

systems , many researc1~. rs have suggested the use of computer hardware design

languages (CHDLs)*. However , using a CHDL does not necessarily facilitate

the design process. An ill conceived language can encumber the design

process arid fail to guide it away from design errors . Such a CHDL then

become s useful only as a documentation aid. It is our belief that most

CHDLs falL into this category , and it is interesting to note that one of

the most popular CHDLs , called ISP fBe l 7lJ , started out as such.

The two purposes of this thesis are:

1. To develop a CHDL with sufficient scope to describe
multi processing systems .

2. To specif y the CI-LDL so that syntacticall y correct programs
describe systems which have deadlock-free control
structures (CSs).

The control problem associated with multiproc essing systems is , in

general , quite comp lex , and the opportuiiities for creating a CS which can

hang-up are great. Specifying the CHDL so that this p itfall can be avoided

by staying within the bounds of the syntax , gives the user a true design

tool which is more than just an aid for documenting the princip les of

operation of a system .

The two aims stated above are to some extent opposing . The first

requires that the CHDL have many constructs , and the second that it have

few (if the view is taken that restricting the language also restricts its

ability to describe undesired objects). However , any compromise reached

*Two comprehensive guides to literature on this topic are [Fig 73] and
[Bar 75]. A recent collection of papers can also be found in [Pro 75].

2

is bound tc’ be unsatisfactory from some viewpoint , and in our case a very

similar situation exists to the one highlighted by Knuth in [Knu 74], con-

cerning goto-less structured programming. He points out that although

~oto-less structured programming retains completeness while enhancing the

potenti al for error-free programming , some algorithms can only be realized

in a clumsy way. By analogy , although our CHDL is in some sense comp lete

and aids error-free design , some control al gorithms can only be realized

in a clumsy way .

1.1 The System Model Presumed b_y the CHDL

In multiprocessing where there are often several independent processes

active simultaneousl y that ,nust be coordinated and synchronized without

being unnecessarily bound together , the most natural model for a CS is an

asynchronous one . This is the one we have used .

The CHDL is capable of bein :-~ used to design digital systems which

conform to the fc~lLowing modeI~ the system partitions into a hierarchicall y

~)r~ an i�ed CS and a data structure (1)S~~. Actions in the DS are assumed to

be repre .-;entab le as register-transf ers. The coordinatien of these actions

is accomp lished b y the CS. The register transfers themselves are initiated

by request (R) si gnals , which issue from the CS and trave l over bidirectional

signal paths called links to the DS. Upon their comp letion acknowled ge (A)

signals are transmitted back along the links to the CS. To enable the CS

to test bit values in the DS,a second type of link , called a conditional

link , is needed. These links carry three signals ; a test (T) signal that

goes from the CS to the bit to be tested , and two result signals (I
L

and

one of which is transmitted back along the link to the CS , depending

on whether the bit was I or 0. The system model is shown in Figure 1.1.

.r:,r - - ,

3

Links Conditional Links

Control
• Structure
• (Network of •

• Asynchronous
Modules)

_ _ _ _

-

-
~~~~ _ _ _ _ _ _ _ _ _ _

R A • • • R A T II 10 • • .T 11 10

Register 1 Bit Field

Funct~ nal
}
~~~~~~~~~ 

[F
Block

Data Structure

~
p. 5571

Figure 1.1. The System Model.

_ _ _ _ _ _ _ _ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

- - - -—--—--.-- -.- - - -- - -- - - . .- -- - -- - -—--- -.---.----.- - -

4

Confrolling Unk

Functional
Block of

Combinational
Logic

-
~~~~~~~ Der i ved

from
APL

Expression 
•

•

Destination
Register

In the simp lest case a single source
reg ister feeds the destinati on register.

Source
Registers

FP- 5 5 ? 2

Figure L2. F~ gister-transfer Logic. 



)

The CEiDL translates to a collection of asynchronous CS modules inter-

connected by links to form a network which ConsLitutes the CS of the target

system. There are ten different types of CS modules , any number of which

caii be used to form the network.

The register-transfers controlled by these networks are also described

by the CHDL. They have the form

D~~~ S

where D is the name of a destination register , and S is an APL expression

whose arguments are taken to be reg isters in the DS. From the stand po int of

the CS these . cpressious can be regarded as functional blocks of comb i-

national logic. Figure 1.2 illustrates a register-transfer in more detail .

The actual structure and design of the functional block is not specified by

the CHDL. That is assumed to be taken care of off-line , poss ib l y by another

program which forms part of a CAD set-up . Such programs are discussed by

Friedman in [Fri 67] and [Fri 69].

To describe the operation of systems conforming to this model it is

convenient to use the undefined term ‘ process ”. This is meant to be some

activity in the target system that is initiated with a request signa l  and

terminates with an acknowledge sirial. The operation of any system specified

by the CHDL can then be regarded as a process which decomposes into other less

comp lex processes. These in turn decompose until finally the operation of the

system can be viewed as a collection of atomic processes - the register-

transfers that are coordinated by the CS. This hierarchical structuring of

processes corresponds to the hierarchical organization of the CS. Communi-

cations over links between hierarchical levels in the CS correspond to the

initiation and termination of processes. We shall see later that the dif-

ferent l eve ls  of contro l are a n a t u r a l  consequence of the b lock  s t r u c t u r e d

nature  of the CHDL.



6

1.2 The Plan of the Thesis

This thesis is arranged as follows .

Chapter 2 introduces the ten CS modules and defines their behaviors

using Petri net graphs. It also gives rules for interconnecting these

graphs so that the behavior of networks of CS modules can be deduced.

Chapter 3 presents the syntax of the CHDL as a set of production

r u les , together with some terminology to enable Later discussion about

objects in the syntax.

Chapter 4 gives an interpretation of the CHDL in terms of pr ocess

behavior , and a procedure for translating programs in the CUDL into net-

works of CS modules. These two things are related using the Petri net

graphs of Chapter 2.

Chapter 5 illustrates the use of the CHDL by presenting the design

of a sma l l  sys tem.  The system is a processor which executes  reg i s t e r - t o -

reg i s t e r  i n s t r u c t i o n s.  These opera te  on a DS of four  r eg i s te r s  and two

multi-purpose function units. The CS is imp lemented as a forwarding

algorithm to achieve instruction execution look-ahead . Such an examp le

has many of the control requirements of a typ ical multiprocessor system.

Thus it illustrates well the capabilities of the CHDL.

Chapter 6 discusses the scope of the CHDL. Due to the acknowled ged

scope of APL to characterize the functional aspects of the DS, the scope

of the CHDL is examined from a CS viewpoint. An indication of its

comp leteness is made , and it is concluded that the first purpose of this

thesis has been met.

Chapter 7 introduces some additional syntactic requirements. Then

it is proved , using a method for characterizing the behavior of networks

of CHDL blocks , that syntactically correct CHDL programs (i.e. ones that



7

satisfy the syntax of Chapter 3 p lus the additional syntactic requirements)

describe systems which have deadlock-free CSs. Computational complexity

arguments show that checking the syntax (excluding the APL expressions of

the register-transfers) is very simp le. Thus, freedom from deadlock c an

be achieved without complicating the syntax of a CHDL or limiting its

scope (this last point from Chapter 6). It is concluded that the second

purpose of this thesis has been met , without resorting to a complex syntax.

Chapter 8 discusses two approaches to the implementation of the CHDL

programs in hardware. The first , based on the asynchronous model of

Chapter 1, discusses constructing the CS modules from logic gates and then

constructing the functional blocks of the DS with additional logic to

generate acknowled ge signals. The second discusses a very natural

synchronous realization , which emp loys a finite state machine for the CS

(realizab le as a PLA and a set of flip-flops) and a bus structured DS.

This approach is shown to overcome the drawbacks associated with requiring

parts of the DS to generate acknowledge signals , while re taining many of

the advantages of an asynchronous CS.

Chapter 9 mentions other app lications of some of the ideas mentioned

in this thesis and compares our approach to CHDLs with others.

Finally in Chapter 10 some conc luding remarks and suggestions for

further research are made.



—~~~
-
~~

.- -~~~~~~~——-—-——-—-——-—-—---—-.
~

-,,

8

2. BEHAVIORA L DESCRIPTIONS OF TIlE CS MODULES

In this chapter the behaviors of the CS modules are defined . (The

actual imp lementation of these behaviors is not discussed until Chapter 5.)

The behav ior fo r each module is de f ined by means of a Petri net (PN) graph

[Pet 661 [Fb i 68], and rules are given for interconnecting these behavior

graphs so that the behavior of networks of interconnected CS modules can

be deduced.

2.1 The Pctri Net Graph

The following definition c-’! a PN is similar to that found in [Hei 761.

A PN is a four-tuple <F, 1,, A , ~‘1? where

P is a non-empty set of distinctly labelled places

~~l
’
~~
” ‘

~~n~
T is a non-empt y set of distinctl y labelled transitions

, t }

A is a relation , A c (P\T)U(TxP)

H is the initial marking.
0

A marking, N , for a PN is a function 14: P-’Z, where Z is the set of

non-negative integers. M (p) is referred to as the token load of the place

p or as the number of tokens on p.

PNs are convenientl y represented as directed graphs. Places and

transitions are the nodes of the graph and the directed arcs show the

relation A. The graph is biparti te since each arc connects a p lace (or

transition ) to a transition (or p lace). Tokens are represented as dots in

the place nodes. If p. is a p lace and t. is a transition and if ~~~~~~~

belongs to A , then p1 
is an input place of t . and t . is an output tran-

sition of pj• Similarily , if <t .,p~> belongs to A , t .  is an input tran-

sit ion of p~ and p~ is an output place of t . .



-U ’

9

Figure 2.1 shows an examp le of a PN. For this examp le , the

relation A is:

A = ~cp 1, t 1
>,<p4,t1

>,<p2 
,t
2
>,<p5, t2>,<p3, t3

>

<t 1,p 2
>,<t2 ,p 3~~,

<t3 ,p4
>,<t3,p 1

>,.ct 3,p5>}

The mark ing shown has value 1 for p laces p 1. p4 and p5 and value 0 for

places p
2 

and p3.

So far we have defined the static properties of PNs. Next we define

the dynamic properties of PNs. It is the dynamic quality of PNs that make

them ideal m odels for asynchronous processes.

A transition in a PN is enabled if each of its input places contains

a token. An enabled transition can fire , which transforms the marking of

the net by removing one token from each input p lace of the transition and

adding one token to each output place of the transition. Clearl y,  a

sequence of transition firings , a firing sequence, causes a sequence ef

marking transformations.

The following procedure which characterize s the dynamic quality of

a PN is called simulation.

1. Compute the set of enabled transitions (U).

2. Choose one transition t ,E U.

3. Fire t .

4. Go to I.

Consider the examp le of Figure 2.1. If the markings are represented

as vec tor s of length 5 , then the marking shown is (1,0,0,1,1) where the order

from left to right is p 1, p2 ,  p3. p4, p
5
. Simulating this simp le examp le

generates a single cycLic firing sequence:

t i t
2 

t
3

(1,0,0,1,1) -4 (0 ,1 ,0,0,1) -4 (0 ,0,1,00) -+ (1,0,0,1,1)

L -________ . • .  —~~~~~~~



10

Fe- 5467

Figure 2.1 .  An Example PN.

L ~~~~~~~~~~~~~~~~~~~~ —.—--~~~~~~~~~~ 
- -



11

t
The notation 14 14’ is meant to indicate that firing transition t trans-

forms the marking M into M ’. This notation can be extended to sequences

of transitions , leading to the following definitions:

A marking 14. is reachable f rom N . if i a sequence ~~E T *~~ H 1 11.

fhe forward marking class M of a marking M is the set ot markings reach-

able from H.

M = ~M ’ I ~~cET * and H - ’  £4 ’ }
.4

A transition (place) is dead for the marking M if ~ M ’ t H, the transition

(p lace) is disabled (does not contain a token).

A PN <F , T , A , N >  is saf e if 14(p) < 1 V p~ p

and V M ~~M

A PN is live if V H E M  no t r a n sit i o n  (place)  is dead

These last two definitions will be used later (in section 7) to

def ine  a dead lock - f r ee  CS.

Figure 2.2 shows how we will use PNs to model processes in digital

systems . Processes are associated with p laces , and their occurrence with

tokens in those p laces. In the examp le of Figure 2.2 the onset of proces s

P is indica ted  by the f i r i n g  of t r a n s i t i o n  R. This causes a toke n to be

deposited in p. The presence of a toke n in p indicates the occurrence

of process P. The termination of P is indicated by the f iring of A , and

the resulting removal of the token from p.

The labels R and A for the transitions which demark the process P

wer e intentionally chosen to correspond to the request and acknowledge

signals used on the links postulated in the system model of section 1.

Now it can be seen how PNs can be used to model the behavior of digital

process es controlled by links : the transmission of a request signal from



12

__________
The Process Controlling 

_________

Process P

Process P is
R p A Not Occurring

Process

o~ Process P
is Occurring

FP-546 8

Figure 2.2. A PN Mode l of a Process.

L ±i .



13

the controlling process down the controlling link corresponds to the firing

of the transition R , and when the process (P) controlled by the link is

comp leted , the transmiss ion of the acknow ledge signal up the link corre-

sponds to the firing of transition A. (The link is viewed as an output

l ink b y the c o n t r o l l i n g  process , and an input l ink b y process P . )

Since a single link may control a comp lete subsystem , the occurrence

of a process , such as P in our example , ‘nay be interpreted as the initiation ,

running and termination of a subsystem , which it self may be composed of a

coll ection of other processes. If the PN which defined the behavior of

this collection of processes , or subsystem , were substituted for P, a

new PN would result represent ing a more detailed account of the system

behavi or.

We are now in a position to define the behaviors for the ten CS

modules.

2 .2  The Source Module

The source (So) module is shown in Figure 2 .3 .  On the l e f t  is a

diagrammatic repre~ entation . It has one output link , wh ich is shown as

an input acknowled ge (A) s ignal  l ine and an output  request  (R)  si gnal

line . On the right is a more concise diagrammatic representation of the

module. This time the link is represented by a sing le directed arc ,

dir ected in the direction in which the request signa l travels. (This last

convention will be used throughout the remainder of this discussion.) In

the center is the PN graph of the So module with its initial marking. By

simulating this PN the behavior of the module can be deduced . The occurrence

of a reques t signal on the request signal line is ind ica ted b y f i r i n g

transition R, and the occurrence of an acknowledge signal line is indicated

by firing transition A. (In later sections subscripts are used to denote 

.—_ _ _ _ _ _ _ _ _ _ _



14

the link to which the signal belongs.) From the PN it can be seen that

the module transmits a request signal initially, and then re t ransmi ts a

request signal whenever an acknowledge signal is received . It thus acts

as a source of requests.

2.3  The Sink Module

The sink (Si) module is shown in Figure 2.4. In operation it

complements the So module. Whenever it receives a request signa l it

tra nsmits an acknowledge signal. It thus acts as a sink for requests.

Notice i t s  PN is iden t ica l  to tha t  for  the So module.  However , in the

So module the request  is an output signal and the acknowledge an input

signa l .  In the Si module the converse is true .

2.4 The Wye Module

The wye (%‘~) module is shown in Figure 2.5. By simulating the PN

it can be seen that when a request is received on link 1 (R1
) ,  requests

are transmitted on links 2 (R
2

) and 3 (R
3
) both . When an acknowledge

signal is received on both links 2 (A
2
) and 3 (A

3
) (in any order) an

acknowledge is transmitted on link 1 (A
1
). Thus a W module may be used

by a process to simultaneousl y initiate two other processes . Only when

bo th of the se processes are comp leted (i.e. when the module has received

acknowled ge signals on links 2 and 3) is the controlling process notified

by the transm ittal of an acknowledge along link 1.

2.5 The Sequence Module

The sequence (S) modul~ is shown in Figure 2.6. By simulating the

PN it can be seen that when a request is received on link 1 a request is

transmitted on link 2. When an acknowled ge is received on link 2 a

request is transmitted on link 3. Finally an acknowledge on link 3 causes

-—-

~

-- -

~

-~



15

I
t

SO? ~ I

Figure 2 .3 .  The Source Module.

I s’ 1 
~~~~~~~~~~~~~~~~ 

Si

FP— 5469

Figure 2.4. The Sink Module.

_ _ _ _ _ _ r~ -

-

_ _ _

16

A

R3 -4 ~- R 2
I W 3.4 W

A 3 ~‘~-I
4 A 2

~~
Icontr

~
n9

()
_ _

()
R3 1 - ~ ~f

1 R 2
(
lS~

Controlled

I Processes
A 3 1 A 2

FR - 5470

Figure 2.5. The Wye Module.

L . ~~~~~~~~~~~~~~~~~~ ~~~~-~~• ~~~-

17

A 1 T
Controlling
Process

R~

R2

()
A 2

Controlled
Processes

A 3

- F P — 5 4 7 t

Figure 2.6. The Sequence Module.

L._ . - ~~~.
.

~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
. .

~~~


—
~~~~~~~~~~~~~~

..--

18

~
.n acknowledge to be transmitted on link 1. Thus the S module may be used

by a process to initiate two processes one after the other. The controlling

process reques ts on link 1 whereupon the proces s controlled by link 2 is

performed . On its comp letion the process con trol l ed by l ink 3 is performed ,

and an acknowled ge is re turned to the con t ro l l i ng  process.

The temporal  sequencing between the processes cont ro l led  by l inks 2

and 3 is indicated in the diagrammatic  representa t ion  of the module  at  the

top right of Figure 2.6. Link 2 is shown with a circle at its base , ind i-

cating that the process that it controls precedes in time that controlled

by link 3. These two links are called the primary and secondary output links

of the S module.

2.6 The Trigger Module

The trigger (T) module is shown in Figure 2.7. By simulating the PN

it can be seen that its behavior is similar to that of the S module , except

that control is returned to the controlling process as soon as the process

controlled by link 2 is completed . Hence the controlling process and the

process c o n t r o l l e d  b y l ink 3 can over lap in time (they can both have tokens

in the ir respective p laces). However , the con tr o l l i n g  process can never ge t

more than one occurr ence ahead of process 3 (we shall adopt the convention

of labelling processes the same as the links associated with them , unless

otherwise indicated), as process 2 cannot be reini t ia ted un ti l process 3 is

comp leted.

Thus the T module imp lements the basic control mechanism for an

assembl y-l ine station platform (called a trigger (And 67]), in a chain of

processes that process data in a pipeline , or assemb ly-l ine fashion.



19

T A~

Controlling
Process I

~~~

()
.L fR2~~

() ControlledS S Processes

::.i
F P—5 4 7 2

Figure 2.7. The Trigger Module.

_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~ -.-_________

20

2.7 The Junction Module

The junction (J) module is shown in Figure 2.8. Its operation can be

viewed as the dua l of the W module. It may be used by two controlling

processes to initiate a third process. The controlling processes request

over links 1 and 2. The third pr cess is controlled by l ink 3, and is not

initiated until both the controlling processes have requested it. The

module thus performs an act of synchronization between two concurrent

pr ocesses , before initiating a third. When the controlled proce ss is

comp leted it broadcas ts  an acknowled ge to both the control l ing processes.

2.8 The Shared Resource Module

The shared resource (SR) module is shown in Figure 2.9. It can be

thought of as a module for allowing two processes to share some other

process (their common resource) .

If a request is received on link 1 then process 3 is initiated. When

this is completed an acknowledge is received on link 3 and an acknowledge

is t r ansmi t t ed  a long l ink I. S imi lar i l y if the request is received on

link 2. Thus either of the controlling processes can gain control of

process 3. If requests on link 1 and 2 overlap (i.e. requests occur on

l inks  1 and 2 w i thou t  an intervening acknowledge on link 3) they are s t i l l

handled in the order in which they arrive. If they occur simultaneously

they are handled in arbitrary order.

2.9 The Mutual Exc lusion Module

The mutua l exclusion (ME) module is shown in Figure 2.10. Controlling

process 1 can gain control of process 3 , and controlling process 2 can gain

control of process 4. The module imposes mutual exc lusion on these two

otherwise unrelated transfers of control. In other words , if process I has

- ~~~~~ n r -~~ 
._~ -~mr~~~ . ~

,. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


__-
~~~----~~~~~-

_~~~~~ - - - -- -~~~~

21

R1 ~
. 1~ I

J 1 ‘.1 J ~4 2
j  -~-A 2 I

1 1
A 3 R3 3

A 1 T -

~~

-

1:*::~ 
~~~~___Cont rolling

_ _ _ _ _ _

R~-4-- k I

R3 J
~
1_L T

(Controlled
Process

A 3

FP— 5473

Figure 2.8. The Junction Module.

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~~~ —- ,-.

_ _ - -~~~~~~-~~~~ . . - . . . ~~~~.--

22

R1 ~~ ~ R2
I SR 1 ~ SR 4 2

I _ _ _ _ _ _

A 3 R3 3

Controll ing

Processes

o
R2 J~~

rolled
Process FP- ! ,4 14

Figure 2.9. The Shared Resource Module.

- -_.~ , —--~~~~~ - - . . - - ~~~-
-.-

~~-~~~~~~~
-.. - ..~~~~~~~~~~~~~ ~~~~ . .~~ ~~~~~~~ - - .~~~~~~~~~~~~~~~~~~~~ - - .--~~~~~ -~~~~

23

A 2 R2 A 1 R 1 2 1

ME ME

A4 R4 A 3 R3 4 3

A2
T

-~~- A
1

I Contro lling
Processes S

R _ i _ R

_ _ II_______________
Controlled

Processes FP - 547~

Figure 2.10. The Mutual Exclusion Module.

-

~

-.1

~

_~..--~~~~~~~~~~___~

-~~~~~~~~~~ .~~~~~~~~~~~~~~~~~ . ~~~~ •.

24

contro l of process 3, 2 cannot gain control of 4 until 1 releases 3. If

both processes I and 2 simultaneously seek control of processes 3 and 4

respective ly, then one pair is preferr ed and it is chosen arbitrarily.

The ME module allows two processes (1 and 2) to share common parts of

the DS (controlled by proc esses 3 and 4 respec t ive ly) whi le main ta in ing the

determinism of those processes.

Both the ME module and the SR module exhibit mutual exc lusion between

two processes. This behavior is achieved by the p lace S (see Figure 2.9 and

Figure 2.10) which is analogous to a binary semaphore initially set to 1.

2.10 The Decode Module

The decode (D) module is shown in Figure 2.11. A controlling process

requests on link 1. This request is transmitted on link 3 or 2 depending

on whether the external boolean variable x is I or 0. The acknowledge is

returned in the usual manner. Thus the D module may be used as a branch

point in a CS. The branch is controlled by the bit x.

In the diagrammatic representation of the D module at the top lef t of

Figure 2.11 the link used to test x is shown as a conditional link . A signal

is transmitted on line T to test the bit and is returned on either I~ or 1
0

depending on whether x is 1 or 0. The testing occurs every time the module

receive s a request on link 1. The more concise diagrammatic representation

of the module in the top right of Figure 2.11 distinguishes the link through

which control flow s if x is 0 by the circle at its base. The module is

labe lled D(x) to ident ify its function (decode) and the name of its argument

(x in this case).

The signals of the conditional link are not exp licitly modelled as

transitions in the PN graph. Instead the test and its result are modelled

by a free-choice node , place f (see [Pat 72) for further explanation of the

L - -~~~~~~~~~~~~ --~~~~—— -_ -—.-~--—-— . -

V ~~~~~~~ -~~~~~-

25

A 1 R1 1

R3 . 4 I- ---0.- R 2 I
D I 3.4 D(X) 1 - ~ 2

A 3

~~~ ~ 

A 2 I

‘r 10 T

T
Controlling
Process

I R~

________________ Contro lled _______________

Processes
FP -5416

Figure 2.11. The Decode Module. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . -


_ _ _ _ _ _ -~ -

26

term free-choice). A token in f can fire either R
2

or R
3

but not both .

This allows for both possible mutually exc lusive outcomes of the test.

2.11 The Iterate Module

The iterate (I) module is shown in Figure 2.12. A controlling process

requests on link I. If the value of the external boolean variable x is 0 an

acknowledge is transmitted back along link 1. If x is 1 the process con-

trolled by link 2 is initiated by transmitting a request on link 2. When

process 2 is comp leted an acknowledge is received on link 2, and if x is

still 1 a request is retransmitted on link 2 reinitiating process 2. This

reinitiation continues as long as x is 1. If an acknowled ge is received on

link 2 when x is 0, process 2 is no longer reinitiated . Instead an acknow-

ledge is transmitted on link 1 back to the controlling process. This module

may be used in a CS when a process is required to be reinitiated as long

as some external bit is 1.

The link used to test x is a conditional one , similar to the one

used by the D module. It is also modelled by a free-cho ice node (place 1).

Similar to the D module , the more concise diagrammatic representation of

the module shown at the top right of Figure 2.12 is labelled 1(x) to identify

its function (iterate) and the name of its argument (x in this case).

2.12 The Behavior of Networks of CS Modules

We are now ready to present an algorithm , which allows us to construct

the PN graph representing the behavior of networks of CS modules , from the

PNs of the individual nodules given in the last ten subsections.

Two cases must be taken into account by the algorithm. In the first ,

an output link of one network of modules is connected to an input link of

- . ~~~~~~~~~~~~~~~~~~~~~~~ __-~•. V~ - - .

-~~~~ ~~-- . V -~ - -- -—--— - - --~~-- - --~~~~--- -—- -~~~~~~~~

27

A 1 R1 1

J

1(X)

A2 R2 2

A 1

Controlling
Process S

R1

-
~~~ 

R2
Controlled
Process

A2

FP - 5 4 7 7

Figure 2.12. The Iterate Module.

- -  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . . . -~~~~~~~~~ -~~~~~~~~~~



-V

28

another network of modules , to form a larger single network. In the second ,

an output link of a network is connected to an input link of that same net-

work , to produce a slightl y differen t network.

In both cases , the construction algorithm can be descr ibed informally

as follows (see Figure 2.13; PN
1 
may be the same as PN

2
):

1. Discard p and q together with their input and output arcs.

2. Combine and R
2 

into a new transition , XR~ 
such that the

input arcs to are those that were inputs to R
1 
and the

output arcs are those that were outputs of R
2
.

3. Combine A
1 
and A

2 
into a new transition , 

~A
’ such that the

input arcs to are those that were inputs to A
2 

and the

output arcs are those that were output s of A
1
.

More formally:

Construction 2.1:

Case I (PN
1 ~ 

PN
2
)

Let PN
1 = <P

r
, T1

, A1, M ’>

PN
2 = <P

2
, T2, A2, M~~

And let the result of the joining be

PN = <P,T,A ,M0
>

Then

= 
~
‘l 

U P
2 

- ~p,q)

T = T1 U T~ U lX R~ 
X
A
) - CR 1, A 1, R2 ,  A2)

A = A
1 
U A

2 
- t<p, A

1
>, <R1, p~~, <q, R2

>, <A2, ~~~

if R
1
, R

2 
are renamed and A1, A

2 
are renamed

V p E p  c~\ po 1
M (p)= ‘~

IM
2 Y p EP f l p

2

- — — — .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .&~t n t~~~~_ , t .  _~~~~~ V~~_~~_



_ _  —---- - -----~~---- - - - --~~~~~~~- --—-~~~~ - - -

29

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~ put Link~~~~~~~~~~~~~~~~

F P—5 4 7 8

Fi gure 2.13. Joining Two Networks.



30

Case 2 (PN
1 

=

P = P
1 

- {p,q)

T = T
1 
U 

~~R’ 
X
A

} - 3.R1, A1 R2, A2
)

and R
2 

are both in T1, as are A
1 
and A

2
.

A = A 1 
- kp, A1

>, <R1, p>, <q, R
2
>, <A2, q>}

if R1, R2 
are renamed and A

1
, A

2 
are renamed X

A~

r M’ V p � q
M (p) ~~

0 else

The X transitions are called internal transitions , since they do not

correspond to a signal entering or leaving the network of modules. With

respect to the externa l  behavior of a network of modules , the f i r i n g  of

this type of transition can be ignored. (Although the transition itself

may be ne ce ssary , for coordination purposes , to ensure that the correct

sequences of signals are modelled.) Hence the following two sequences of

t r a n s i t i o n s  associated wi th  PN graphs for networks of modules are regarded

as equivalent , from a behav ioral point of view :

R1 
R
2 

X
3 

X
4 

A
5 

X
6 

R
7

R
1 
R
2 

A5 
R
7

This leads to the two simp l i f i c a t i o n s  shown in Figure 2.14 . App l y ing

e i t h e r  of these s i m p l if i c a t i o n s  to a PN does not a l te r  the behavior  tha t  it

models. The one at the top of the figure is straightforward : the p lace p

and i t s  input and output  arcs are removed , then t r ans i t i ons  ~~ and X”  are

consolidatcd into a new transition X~ The input places to X are those which

went to X ’ and the output p laces of X are those which were fed by X.”. This

s imp l i f i ca t ion  can be applied onl y when the only elements of A in which p

occurs are <X’ ,~? and <p , X”>. The simp lification at the bottom of the

figure is a l itt le more comp licated , and can be expressed in a more formal 

- - - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. : ~~~~ - ~~~- - - ---~~~~~~~~~



F - _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

31

SI mp Ii fic at~o~ 1

X 1 
x 1 p1q1

X m Yn X m PmQ n

Simp l i f i cat ion 2 
FP 5479

Figure 2.14. Two Simplification5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- - -- ~~ ~~~-..

32

way as:

Remove from A Replace wi th

<X1, p
1
> , p 1’ X> ~~~~

p 1q1
>, <p 1q 1, Y

1
>

<X~~ P~>~ <p~~ X> <X
1

, p
1q

>, <p1
q , Y>

<~~‘ q 1
>, <q1, ~ 1

> .

<X , p~ qj>, <p~ q 1~ Y
1
>

<~~~~~ q~>, <~~~~‘
Y>

p q > , <p q , Y >
m m n m n n

Remove ~X) from T.

Remove t.p 1,.. . ,p ,q
1,. ..,q)

from P and replace with

tp 1q 1, ~~~~~~~~~~~~~~~

If M (p.) = 1 =~ M (p.q 1),
...,M (p.q) = 1.

If M(q .) = I M (p
1q .).,,,,

M (p q.) = 1.

(Simplification 1 is just a particular case of Simp lification 2.)

Both s i m p l i f i c a t i o n s w i l l be used in fu tu re sections to f a c i l i t a t e

arguments concerning the behavioral equivalence of networks of CS modules.

At this point it should be imp l i c i t ly clear that our view of

behavior is one that equates the behavior of a network of CS modules wi th

the sequence of s ignals into and out of the network. This view has been

exp lored in depth in [Pe t 73] , where the propert ies of sequences modelled

by PN5 are studied .

Figures 2.15 and 2.16 illustrate Construction 2.1. Figure 2.15 shows

case 1 and Figure 2.16 case 2. In Figure 2.15 two PNs representing W

modules are joined to form a three-output W module. At the top of the

figure the unsimplified result of the construction algorithm is shown ,

L _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - V .—- .- - _ _
--- _ --~~~ -_--_- . - . -~~~

33

~~

.

_ _

_

-
~

? r~~~° ? P
I ~~~~~~~~~~~~

~~~~~~~~~~
, 

~~~~~~~~~.I

-.

L ~~~~~~ - -~~~

~i~ u r& 2.15. (:Lliis tructjofl ~i. (case 1).

L -—~~
.___ -~~~~~~~~~~~~~ -

.

_ _ _ _
_ _ _ _ _ _ _ _ _ _ - - V

34

_ _
_

I_ _

A 2

r—f~1
L~ T 2

-— — —

Figure 2.16 . C o n s t r u c t i o n 2 .1 (case 2) .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_ - -

~~~~~ - -- - ---- _ ------ .



~~~~~~~~~~~~~~~~ - -,-- --~~~~~~~--

35

and at the bottom the simp l i f ied resu l t (app ly Simp l i f i ca t ion 2 with m= 1,

n=2 to X~~, then with m=2, n=l to X2
). In Figure 2.16 the output link

3 of a network consisting of a W module , a T module and a J module is

joined to the input link 4. At the top of the f igure the PN for the net-

work , before the links are joined , is shown. At the bottom of the figure

the PN for the networks , after the links are joined , is shown. The behavior

obtained by simulating this PN is equivalent to that obtained from simu-

lating the PN that defines the behavior of the S module (see Figure 2.6).

This leads to two observations. One , of incidental interest , that we can

construct an S module from a W , a T and a J module. The other , and more

important , that the PNs used to define the behaviors of networks of modules

need not have equivalent graphs to represent the same behavior . In other

words ther e is no uni que PN graph associated with a particular behavior .

(However , there is a unique behavior assoc iated with each network of

modules.) This deficiency could be rectified by following the ideas pre-

sented in [Jum 73]. Jump calls the PN graphs that are used in this dis-

cussion “signal graphs ”. He presents an algorithm for deriving another

PN graph , called the “behavior graph” , from a signal graph , which is unique

for a particular behavior . Although Jump confines his discussion to line

and safe marked graphs (a subset of the class of live and safe PNs), his

ideas could readily be extended to the class of all live and safe PN5.

Since our discussion will not go into very comp licated arguments concerning

behav ioral equivalence , this developmen t , together with the additiona l

formalism , is unjustified.

One final point concerns liveness and safeness. Construction 2.1

case 1 will always result in a live and safe PN, if both component PNs

were live and safe to begin with . However , Construction 2.1 case 2 can

I.. - - .

— __ .___.__ _ _~_ —V_V. — .___ ____ -._.__._.. ._ — __ —.__ —_.._— _____..__._..—

36

r e s u l t in a PN which is not j ive and safe even though the origina l PN was

l ive and safe to begin wi th (consider a J module with its output and one of

i t s i n p u t s c o n n e c t e d) .

2 .13 Comments on the t1odules

The modules presented here are now new. In embryonic form , many of

them can be found in [Mu l 63] . Al l of them can be found in [Den 70] , w i th

Lhe cxccpt ion of the SR module . (Even t h i s can be formed f rom the A modul e

and the U module presented t h e r e i n .) The SR module ’ can be found in [Pe t 74] .

Further literature discussing the properties of some subset or another of

the modules also includes [Alt 69], [Alt 70], [Bru 71] and [Pat 72]. Other

s e t s of CS m o d u l e s ex i s t [Be l 72 1, [C I a 6 7] and [Ke l 7 4] . Our set , was

chosen because its members have a n a t u r a l correspondence w i t h the CFLDL.

_ _

~~~
_1_

~
_ _

~~~~~~_~~~ ____ V - _ _


_ - - - V .- ~~
--

37

3. THE SYNTAX OF THE CHD L

Programs in the CHDL de f ine dig ital sys tems by des cr ibing networks of

the CS modules presented in the previous chapter and the r e g i s t e r - t r a n s f e r s

they control. Before going on to show how programs in the CHDL relate to

networks of these CS modules , we shall use this chapter to present the

syntax of the CHDL together with some terms that will be usefu l in later

discussions when referring to objects in the syntax.

Figure 3.1 gives the syntax of the CHDL in BNF (Backus-Naur form).

Non-terminal symbols are written as sequences of upper case letters.

Terminal symbols are underlined sequences of upper and lower case letters ,

and special characters (brackets , commas , etc.). The terminals are listed

in Table 3.1 together with their subsequent representation , if it differs

from that shown in Figure 3.1. The following symbols also appear in

Fi gure 3 .1.

I ~ I
They are m e t a - s y m b o l s be long ing to the BNF formal ism , and not symbols of the

CHDL. The f i r s t two should be f a m i l i a r , and the cur l y b racke t s denote

possible repetition of the enclosed symbols one or more times. In general

1.A} ~ A~AA I A A A I . . .

By examining the productions it can be seen that a program (represented by

non-terminal PROGRPd4) is a list of blocks (BLOCK) terminated b y End . The

blocks are blocks of s ta tements (STAT , see product ion 10) , and each is

headed by an identifier (ID). This is an alphanumeric string unique to the

block*.

*Not all these stipulations are specified by the syntax of Figure 3.1 alone .
These add itional syntactic requirements are discussed in Chapter 7.

-- .---___ -—--- ~~~~~~~~~~~ -V_V

38

1. PROGRAM :: 1BLOC K } Dl End

F
2. BLOC K :: Dl ID BLOC KBODY

3. BLOCKBODY :: = PROC DPROC I MPROC TPROC WPROC

PROC :: = STAT FIELD3I

5. DPROC :: = Dl Decode (DREG) as DLIST

6. MPROC :: = DI Mutex t (L AB E L , LABEL)) ~STAT}

7. TPROC :: = Dl Tr igger STAT STAT

WPROC :: DI Whi le (DREG) do PROC

DLIST :: = Dl None~~ FIELD2 t {.Dl BITS FIELD2}I

tDl BITS ~ FIE LD2) Dl None ~ FIELD2

10. STAT :: = FIELD I FIELD2

11. F’IELDl :: = Dl LABEL)

12. FIELD2 :: = IDIID [LABEL] tREG-TRF(NuLl~Wait (DREG)

13. FIELD3 :: = I (ORDER- INFO)

14. ORDER- INFO :: = LABELILABEL , ORDER-INFO

15. LABEL :: = ~Digit)

16. ID :: = i.Letter~ Digit)

17. REG-TRF :: = ID ~ DREG

18. BITS :: = i.o l i)
19. DREG :: = APL expression with IDs as variables.

Figure 3.1. The CHDL Syntax.

39

There are five types of blocks (see production 3 Figure 3.1): the

process block (PROC), the decode process block (DPROC), the mutual exc lusion

process bloc k (MPROC), the trigger process block (TPROC), and the while

process block (WPROC). These are distinguished from each other by the

terminal symbol appearing after the block ID (see productions 4 through 8

Figure 3.1).

A PROC block is composed of a list of statements each having three

fields (FIELDI through FIELD3). In the first field there is a numeric label

(LABEL) , unique within the block to that statcment. ’
~ In the second field

there is either the ID of another block , a register-transfer process

descr iptor (REG-TRF), a nu l l process descriptor (Null) or a waiting process

descriptor (Wait (DREG)), If an ID occurs that is the ID of an MPROC bloc k ,

it is followed by a numeric label in square brackets. This label must also

correspond to a label in the MPROC block of statements referred to.~ The

third field is optiona L , and it can contain an n-tup le (any n >O), which

should only contain labels from FIELD I of other statements in the block.~

A DPROC block is distinguished by the terminal symbol Decode

following the block ID (they are separated by a carriage return and line

feed). Aft er this comes (DREG), the decode argument , and another terminal

symbol as. The remainder of the block is a list (DLIST, production 9) of

statements whose first part is either the terminal symbol None or a string

of bits , and whose second par t is the same as the FIELD2 of a PROC block.

The two parts are separated by the terminal symbol ~~.

An MPROC block is distinguished by the terminal symbol Ilutex

foll owing the bloc k ID. After this symbol comes a list of pa irs , call ed

*See previous footnote.

_ ~~~~~~ —V .—

40

Terminals Represen tation if different
trom that in Figure 3.1

Carr iage return , line feed
(non-p r in t ing)

End

Decode

(

)

as

Mut cx

Trigger

While

do

None

Nu ll

Wait

Empty string

Digit 0 1 1 1 2 I 3I4 I 5 i 6 I 7~8I9

Letter A I Z.

4-

0

Table 3.1. The Terminal Symbols.

—---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



41

the mutual exclusion condition . These pairs have labels from FIELD1 of

subsequent statements in the block as their elements.* The reimainder of

the block is a list of statements similar to those in PROC blocks except

FIELD3 is not present.

A TPROC block is distinguished by the terminal symbol Trigger

follow ing the block ID. After this symbol come two statements similar to

those in MPROC blocks .

A WPROC block is d istinguished by the terminal symbol While following

the block ID. After this symbol comes (DREG), call ed the while argument,

and another termina l symbol do. The remainder of the block is similar to

a PROC block.

The statements used in the blocks (see productions 9 through 12) are

classified as register-transfer types if FIELD2 is a register-transfer

process descriptor (REG-TRF) , process-call type if FIELD2 is a process-call

descriptor (ID I ID [LABEL]), null types if FIELD2 is the null pr ocess

descr ip tor Nu ll , and wait types if FIELD2 is the wait process descriptor

~~~~~~t (DREG) (the (DREG) in this caSe is the wait argument).

The non- te rmina l DREG , which occurs in product ions 5 , 8, 12 , and 17,

represent an APL [Hil 73] expression with IDs as variables. As we saw in

the system model of Chapter 1, these IDs represent registers in the DS. The

result of this expression is a vector of bit values. In the case of pro-

ductions 5 and 17 this vector can be of any length. In the case of production s

8 and 12 it should be only a single bit.

The format of descriptions in the C}IDL is controlled by the appearance

of the delimiter Dl (carriage return , line feed) in the syntax. Spaces may

be included between termina l symbols to aid the readability of the CHDL text .

*See previous footnote.

V . -V ~~~V.

-V~~~~~~~~~~~~~~~~~~~~~~~~~ V~ V.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V . V. V.- V_ -V~~~~~~~—~~~~~ V-— V

42

4. INTERP RETING AND TRANSLATING PROGRAMS IN THE CHDL

In this chapter we will present , informally , an interpretation of the

CHDL in terms of process behavior, and a procedure for translating programs

in the CHDL into networks of CS modules. These two things are re la ted to

the following way. The translation procedure associates a program in the

CHDL with a unique network of CS modules. Since each network has an unam-

biguous behavior (see Chapter 2) , so does each program. This behavior is

our interpretation of the CHDL. Furthermore , this behavior ultimately

de scribes a collection of register-transfer processes (see Chapters 1 and 2),

whose functional nature is characterized by the APL expressions in the

r e g i s t e r - t r a n s f e r statement s of the program . Thus programs in the CHOL

unamb iguously define digital systems conforming to the system model of

Chapter 1.

From the discussion in Chapter 2 it should be clear that , in many

cases , a par ticu lar behav ior may be realized by several different networks

of CS modules. Since in our translation procedure we require that each

program have a uni que modular rea l iza t ion, a choice must be made in

speci f ying the translation procedure. Some choices may result in more

efficient realizations than others. This question has been discussed to

some extent in [Mud 75] and [Mud 77]. In this discussion we will not

consider it.

4.1 The Process Block

Figure 4.1 shows an example PROC block. The CHDL description is shown

at the top left. The behavior defined by this bl ock can be~ obtained by

simulating the PN at the top right. This process (called PBLOCK in the

CHDL) decomposes into four subordinate processes corresponding to the four

- ~~~~~~~~~~~~~~ . .. - .- -_,~~~~~~~~~~~ V. _.,V__ _ V . . _ _ —- V

43

3) AC..~ACL~R1 (1 ,21

~~~~~~~~~~~~~~ R 1~~~~~ R2 
MBLOCK{ 1] 

-

~~~~~ 

,

- -

AC - -AC + Ri

I
DBLOCK~

- -

~~~~~~~~~~~~~~ 

~~~ R2H 

~

I~s
H

c Kf 1
~

~~~~~~ A~~~~C+R I DBLOCK - -

Figure 4.1. An Example Process Block.

-- V-V V - - ,~~~~~~~_. - V. -- -, - ==_.~~w- -- -V- ~~- -—



~~~~ - .~~~.-~~~~~~~~---~~~~~~~~ —

44

statements. The order in which they are to occur is given by the adjacency ’

structure formed from the statement labels and FIELD3 of each statement.

This order information can be interpreted as follows. Upon initiating the

process PBLOCK, the subordinate processes corresponding to statements 1 and

2 are initiated . When 2 is comp leted the process corresponding to statement

4 is initiated. When both 1 and 2 are comp leted , the process corresponding

to statement 3 is initiated. The process named PBLOCK is comp leted when

both 3 and 4 are comp leted. The adjacency structure of PROC blocks can be

viewed as a partial ordering of processes in which the underlying binary -

relation is “precedes in time”. These partial orderings each have a uni-

versal lower bound (in our examp le this is the process that controls PBLOCK).

The Hasse diagram for the adjacency structure of PBLOCK is shown at the bottom

left of Figure 4.1 (we adopt the convention of drawing Hasse diagrams with

their lower bound uppermost). The four subordinate processes are as follows :

Statement I defines a register-transfer : move the contents of register R2

into register RI. Statement 2 define s a process-call , MBLOCK [I]. State-

ment 3 defines a register-transfer: move the ~um of the contents of registers

AC and Rl into AC. Statement 4 defines a process-call , DBLOCK.

A register-transfer has already been discussed in the system model of

Chapter 1. A process-call is similar to the subroutine const’uct found in

many programming languages. It is a point where the t r a n s f e r of control to ,

and the return of control from , another process is made. The behavior of

th is process is def ined b y a block whose ID matches the ID used in the

process-call. Thus process-call type statements induce a hierarchical

ordering on the block structure of a CHDL program. This is a partial ordering

that characterizes the control relationship among the blocks. Each block in

the program is the controlling process for those blocks that are its ininediate

, ,. . — - . VtJ ~_j _2,V~~~~V. - —-—— -‘-— _‘— _V-—.=’V- V.~~_ -

. .

45

successors in the ordering. Thus in our examp le , PBLOCK is the controlling

process for HELOCK [1] and DBLOCK. In general , PROC block s define , by way

of their adjacency structures , the temporal relationsh ip among a set of

subordinate processes.

The modu1-~ realization of a PROC block can be derived directl y from its

Has se d iagram. Each node corresponds to a sub-network of J , S and W modu les

arranged as follows . The input links to the network are the inputs to a tree

of (rn-i) J modules. Their output is connected to the input link of an S module.

The secondary output link of this S module is connected to the input of a tree

of (n-I) W modules . The outputs of the W tree are the output links of the

sub-network . The value of m is equal to the number of imm ediate predecessors

of the node , and the value of n is equal to the number of the immediate

successors of the node . If two nodes are joined by an arc in the Hasse

diagram , an output link of the sub-network corresponding to the “higher ”

node is connected to an input link of the sub-network corresponding to the

“lower” node. In this way the module realization of a PROC block can be

systematicall y constructed. However , two special cases arise in this pro-

cedure . Firstly, at least one node has no successor . The sub-networks

associated with such nodes are just composed of a tree of (m-l) J modules.

Seco ndl y, one node (the universal lower bound) has no predecessor. The sub -

network associated with it is a tree of (n-i) W modules.

The important points to notice about the structure of networks formed

by this procedure are t bat they only have a single input link (which is

connected to their controlling process , as we shall see in 4.6), that no

intra network connections involve the primary output links of S modules ,

and that each statement (except the Null statement) has a unique output link

associated with it. (These links control the processes defined by the

- ~~~~~~~~~~~~~~~~~~
V

~~~~~~~~~~~~~~~~~~~~~~~ 
V.



- — —-V. .- ---  . - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - V

46

block’ s statements.) For statements whose associated Hasse diagram nodes

have successors , the output links are the primary output links of S modules.

For statements whose associated Hasse diagram nodes have no successors ,

thesc links may be the output links of W modules , J modules , or the secondary

output links of S modules. The Null statement is a special case. It repre-

sc nts  the null or empty process. Consequentl y, it is realized by an Si

module. Thus any link associated with a Null statement connects directl y to

an Si module.

The bottom right of Figure 4 .L shows the module realization of the

examp le PROC block obtained by using the above procedure . By using the PNs

of Chapter 2 , which define the behavior of the individual modules , together

with Construction 2.1 and Simp lifications 1 and 2, the reader may verif y that

the associated PN of this realization is the same as that at the top right

of the figure .

4.2 The Decode Process Block

Figure 4.2 shows an examp le DPROC block. The CHDL description is shown at

the top left. The behavior defined by this block can be obtained by simulating

the PN in the center of the figure .* This process (called DBLOCK in the CHOL)

performs branching based on the valoe of the two-bit variable X (the decode

argument). If X = O O then control is passed to a process defined by the

piocess-call ABC. If X = 11 then control is passed to a process d e f i n e d  by

the register-transfer. All other values of X (signified by the terminal

symbol None ) r e s u l t  in the n u l l  process.  In general , OPROC b locks  d e f i n e

a multip le way branch process. (There is an obvious analogy with the case

statement found in many high leve l programming languages.)

*In this figure and future ones we shall leave internal transitions unlabelled ,
u n l e s s  they are exp l i c i t ly mentioned in the text .

- - — . . ., . -
~~~~~~~~ 

- - -
-
~~~~ ~~~~~~~~~ 

- - ~~~~~~~~~~~~ - - _______



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .

47

DBLOCK —- _________________________

Decode ( X )  as
00 -> ABC - -

11 -
~~~ RO-.--Rl

~2!1~ ~~~~‘ Null DBLOCK

U

R0~~ - Rl~ ABC

A

DBLOCK

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure  4 . 2 .  An Examp le Decode Process Block.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— - V . - - ~~~~~~~~~~~~~~~~ .- -V - -  - -

48

The modul e realization of a DPROC block is simp ly a Irec of I) modules.

I I n is the  number of b i t s  in the decode argument  , the tree has he ight n.

Li those bits are b
1
, b2

,. . . ,b , then b . is examined b y the  c o n d i t i o n a l

Lin ks of all D modules at leve l i in the tree. Thus each D m o d u l e  at leve l

i h a s  b . as i t s  argument. Those output links corresponding to the decode

ar~ um~ i)t None (i.e. those links in the t r e e  c o r r e sp o n d  ing  t o  none  of the

.~q ’ l i c i t I y l i s t e d  values that the argument nay take ) must access their

c oinnio i i  proc ss 1 hr ou~ ii a trek - of SR uodei Ic s . In our  examp le , this common

p r o c e s s  is t he  n u l l  p rocess , and the’ t r e e  is j u s L  a s i n g le’ SR m o d u le .

St m i c t  Iv  s p e a k i n g ,  t h i s  SR m o d u l e  is an interb loc k connec t i o n , r a t h e r  than

an j o t  r i — b  loc k connect ion as shown iii F i gure  4 . 2 .  (See F i g u r e  — e . 7 , sect  ion

The b o L t  On of Fie~cire 4.2 shows the modtt i t -  r ea  i i  zat ion of the exanip 1

D1’K.x: block. l’s in~ the methods of Chap te r 2 t h e  r eader  may v e r il  t h a t  the

i l S S V )L i ated PN 01 t l t  i s  reali zation has the same beliavioi - as t h e  PN at t h e

c e m i l er  & l t  t i l e  1 i~~ i l r e . ( N o t e , howeve r , t h a t  t h e ’  PNs are  not the’ sam e . )

I [l i t  ~‘Iii t iia I Exc l u s i  all  P r o c e s s  B l o c k

F l  ~ure -~. . 3 shows au  example MPR OC b l o c k .  The CHDL d e s c r i pt  ion i s

V ,h t .w :l it  t i l e  L O U .  Fime -  b e h a v i o r  de f i l l e d  by  t h i s  b loc k can  be o b ta i n e d  b y

S e-~ I I  t a t  I i i ~~
- . t h ~ PN in t h e  c e n t e r  of the figure . l h i  s p r o c e s s  ~c a 1  l e d  MB LOC K

1 it 1 h~- i hIb I pt r forms niut cia 1 cxc h is ion betwee n Ce rt a in pal rs of thre e

p r a e e -s  -~c t h a t  eac h r e q u i r e - s  t ei gain cont  r o l  ot a d i  I fe re nt  OIIc of t h e  St1b

ord i o at  ~
- p r oc  e ~ses d e f i n e d  b y t ime b l o c k ’  s t hree sI ale’men t s . The s~-

c o n t r a i l  l i i e  I ) l~~’c t 5 s t S  are- m i o t  shown e x p l i c i t l y  in t he  eX a f l ip le , b u t  c -ac h

U ‘ II I ci i. ‘a t  a i i i  i ~ t o e e s  s — e m i l  I ypm _ st at e m n e mi t whose F IE LD2 (sc-c proeluc t i o n  12

I- j Y I U ~I - 1 . 1  i was of t h e  f o r m  M B L O C K I  i i . flie’ value of j corr cs l’oll d s to the

1 lb I of  t In s t a te m e n t  de f l i i i mig  t he  suhord  m a t  e’ p r o c e ss r e q i m  i red by tin 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


- - ~~~~

MB LOC K
Mutex (1 ,2) 1 1 ,3)

_____________ _______ ______________________

1) AC~~- PC I . .

-- -

2L~C-’-- MD3) PC- ~- - P C + 1

• 1

•

PC~~PC~+ 1 / AC~~PC IAC
~

MD

-V -V
~

-V -V
~~~~~~~~~~~~~~~~~ N

\
~~~ 

LOCK

PC
~~

- PC + 1 AC~ - PC AC~ - MD //

Fi gure 4.3. An Examp le Mutual Exclusion Process Block.

~

. .~~~~~~~
_ _ _ _ _ _ _ _

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

50

MB LOC K
Mutex (l,2)(l ,3)(2 ,3)
1) AC-’- PC
2) AC -~--M D
3) PC~ —P C~~l

_ 2 1 2

ME 3
ME

1
AC ~~

— PC
ME ME

AC -.*--MD1 ME
AC -S-MD

ME 1
PC -..--Pc+1

AC -I-PC PC-~— P C + 1

Incorrect Correct
F P - 5 4 8 3

Figure 4.4. Correct and Incorrect Realization of a Mutual Exclusion
Process Block.

- - - - - -~~~~~~~~~ -~~~~~~~~~~~~ . —-V - -

- ~~~ _ _ _ _ _ _

51

c o n t r o l l i n g process. The nature of the mutual exc lusion is defined by the

mutual exc lusion condition (see Chapter 3) following the Mutex symbol.

Each pair indicates two subord inate processes , which are to be

mutua l l y exc lusive in t ime . Thus in the example , stateme nts 1 and 2 def i ne

m u t u a l l y exclus ive processes , as do s ta tements 1 and 3. In general , MPROC

bl ocks define a collection of subordinate processes which are separately

controlled , and wh ich wou ld norma l l y be def ined within other blo cks were

it not for the mutual exclusion requirements.

In the examp le of Figure 4.3 the three statements define register-

transfers. The rcsiriction on their concurrency imposed by the mutual

exclusion condition ensures that reg ister AC is not being used as the

d~ stination of two distinct register-transfers simultaneously , and further ,

that the register PC is not being modified at the same time as it is being

used as the source of a r e g i s t e r - t r a n s f e r .

The realization of any MPROC block can be derived directl y from the

list of pairs in its mutual exc lusion condition. Each one corresponds to

a u ME module. The rules for their interconnection should be clear from

th~ exam p le in the figure. If the ME modules are regarded as nodes in a

directed ~raph , no realization should contain a circuit. The correct and

incorrect way to realize a block in which the potential for this occurs is

shown in Figure 4.4. (The block shown here is similar to that in Figure

a .3 , except that it has a stronger mutual exc lusion cond i t i on .) Each

s t a t e m e n t corresponds to a unique output l ink and its associated c o n t r o l l i n g

process gains control of the process it d e f i n e s , through a uni que input

l i n k . Thus the module r e a l i z a t i o n of a MPROC block has as many input links

as output links. (All other bloc k types have only a single input link.)

L. ~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

52

The bottom of Figure 4.3 shows the module realization of the examp le

~~ROC b lock . Once again the reader may verify that the associated PN of

this realizat ion is the same as that in the center of the figure.

4.4 The Trigge r Process Block

Figure 4.5 shows an examp le TPROC block. The CHDL description is

shown at the top . The behavior defined by this block can be obtained by

simulating the PN shown ir the center of the figure. This is the PN for a

T module (see Chapter 2 , section 2.6). Thus the module realization for this

exampl e , as for all TPROCs, is a T module.

The process def ined  b y the CHDL (called TBLOCK) decomposes into two

V subordinate processes corresponding to the two statements. They both

def ine  p roces s - ca l l s , M BLOCK [2 ]  and XYZ. The order in which these sub-

ordinate processes ar~ to occur is given by their lexical order of occurrence.

Thus M.BLOCK[2) precedes XYZ. However , the ability of T modules to control

overlapping processes means that the process defined by XYZ may be simul-

taneously active with the process that controls ThLOCK. In general , TPROC

blocks are used to define such overlapping or assemb ly-line processes.

4.5 The While Process Block

Figure 4.6 shows an examp le WPROC block. The CHDL description is

shown at the top left. The behavior defined by this block can be obtained

by simulating the PN at the right. This process (called WBLOCK in the

CHDL) is reiterated as long as the while argument is 1. The interpretation

and module realization of WPROC blocks is the same as for PROC blocks except

for the conditional reiteration . In our examp le the reiterated par t of the

process decomposes into three processes. The Hasse diagram correspond ing

to the order of occurrence of these is shown at the left . The module

~~.V—-~~~ ~~~ - - ~~--- -~~ -V. -~~~~ - - -  V. - -~~~~



V.~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

53

TBLOC K
Iag.g~1) MBLOCK [2]
2) XYZ

• T BLOCK

MBLOCK[2]

(•)

Ix Y Z

~~~~~~~~~~~~~~~~ BLocK~~ 

FP -5 485

Figure 4.5. An Examp le Trigger Process Block.

_ _ _ _ _

——_ - -~ - - - - - ---- ---V-—-- - -— ~~~ .- ~~~~--—~~—- -V’1
~~

54

WBLOCK
While (y) dQ
1) MBLOCK [3]
2) TBLOCK
3) DBLOCK (1,2) • WBLOCK

_

O~
IL~~p

_

MBLOCK [3] TBLOCKI

~~

~~~~~~~~~~~
DBLOCKJ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

W BLO C K

~~~~~~~~~~~~~~~~~~

MBLOCK [3]~4 cJ S 
I~~~~F~~~

TBLOCK

DBLOCK

Figure 4.6. An Example While Process Block.



55

realization of WPROC blocks realizes the conditiona l reiteration by having

an I module at the head of each realization. The argument of the I module

corresp onds to the 1 bit variable appearing as the while argument.

The module realization of the examp le WPROC block is shown at the

bottom righ t of Figure 4.6. Once again the reader may verify that the

associated PN of this realization is the same as that at the top of the

figure.

There is a degenerate form of the WPROC block , and this is the Wait

s t a t e m e n t .  It is real ized by connec t ing  an i t e r a t e  module fo l lowed  b y an

Si module to the link associated wi th  the Wait  s t a t emen t .  If  the 1 bi t

var iab le  appear ing in the wait argument is z, then it may be interpreted as

fo l lows : the control  process wa i t s  at t h i s  point  as long as z remains 1.

4.6 The Inter Block Connections

Figure 4.7 shows the inter block connections that arise front the five

examp le b locks  discussed in the previous sec t ions  of this chapter. These

are induced by the process-call type statements in the five blocks. Except

for MPROC blocks , all block realizations have exactly one input link. If the

ID of a process-call statement in some block , A , matched the ID of another

block , B , then the link corresponding to the statement in A is connected to

the input link of B. If in the whole system of blocks there are n process-

call statements with matching IDa , this connec t ion must be done through a tree

of (n-I) SR modules. In our examp le , two SR modules are necessary . One is

required, because the process DBLOCK is shared by two other processes (PBLOC K

and WBLOCK). The other is required , because the null process is used twice

by DBLOCK. The case for MPROC blocks is slightly different , since MPROC

block realizations have as many input links as statements. The process-call

statements which correspond to the process defined by an MPROC block are of

- z — ~~~~--~~~~~~~~~ ..~~~_ ~~~~~~~~~ .. - - - -



~ —

56

PBLOCK WBLOCK

PC PC + 1
,

~~~~~~~~~~~~ME 1)
AC-~-- PC AC-i-—ME TBLOCI<

MBLOC~~~~~~~~~~~~

•1 SR~~l
DB LOCK

Ri

D (X 0) ~~~~~ X 1) ~~~~ A a3

~I
SR I 1 J

Null

Si
V.54 88

Figure 4.7. Inter Block Connections.

~

- -

~

- -~~~~-~~~~~~~~~~~~~~~ -~~~~--

V - -
~ V -

57

the form ID[i], where ID matches the MPROC block ’s ID and i matches a

statement label in the block. In such cases the connection is made to

the input link which corresponds to the statement in the MPROC block

hav ing label i. As before , if in the whole system of blocks there are n

process-cal l statements with matching ID [ij s , this connection must be

done through a tree of (n-i) SR modules. The input links of those blocks

having no predecessors are capped with So modules.

4 , 7 Continents on the Blocks

The blocks give a convenient way to formulate the design of a system

as a hierarchy of less comp l icated subsystems . Due to the parallelism that

the blocks can def ine , this hierarchical organization can also be viewed

as a series of nested pa r t i a l orderings of processes.

We note a lso (and we sha l l see in Chapter 7) that i t is p a r t l y because

the syntax p laces branch points and mutua l exclusion points in special

block s, that C}IDL programs only describe CSs that are deadlock-free.

Final ly , we note tha t , because the syntax places T modules in special

blocks , CHDL programs show clearly the point at which the CS partitions

into overlapping segments. T modules could be p laced anywhere S modules

are in CHDL def ined CSs, without losing freedom from deadlock. However ,

the operation of such structures wou ld not, in gereral , be easy to visualize.

_ _—— - V. -~~~~~ -V-

_
-

Sb

5. AN EXAM P LE DESIGN USING tilE CI-IDL

lii this chapter t u e US e- of t i m e CHDL is illustra ted by presenting the-

d e s i p u i of a sina i I s y s t e m. -

The s y s te m is a p r o c e s s o r w h i c h execu tes r e -g i s t . r -t o - r eg i st er i ii-

s t r u c t i o n s . Ihese operate on a DS of f o u r reg i s ter s and two m u l t i - p u r p o s e

f u n c t j ol t u n i t s . The CS is imp l e m e n t e d as a f o r w a r d i n g a l g o r i t h m L u a ch ieve

instruct jolt execution look-ahead .

5.1 Tue Forwarding Algorithm

B e f o r e d i s c u s s i n g the CHU L program t h a t d e s c r i b e s the des i gn , some-

t h i u i ~ shou ld be- said about the forwarding algorithm used in the dcsiu ;iu .

It is baoe-d on one first presented by To t a s u l o L Tom 6 7 1 , an d is a im ed at

the- efficient exp loitat ion of culti p le function units. B~ s ic t o t h~ te ch-

ni que- is a reg ister taggin~ scheme which permits simultaneous ex ecut ion of

independent instructions while pr o - c r y ing tile essential precedence ’s inherent

in the instruction stream.

The US is shown in Fi -ore 5.1. In reality it evolved as the CHDL

program was being written. h owever , for didactic purposes it is con-

venient to present the complc-ted US.

The instruction reg ister is shown as IR in Fi gure 5.1 , and the’ format

is two-address register-to-regi ster. The registers (shown as Ri through

R-.) are- specified by f i e l d s A and B in IR , and the dyadic operation per-

formed on the data in those registers is determined by the value of the-

fie ld OC in IR. The instruction is interpreted as follows :

RA~~ C (RA) C(RB) A i , : : :, 4

_ _ _ _ _
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

59

_ _ _ _  I
M P c 7  [INci

MD I JON J

OC B 
~ 

IR

IACT1I OCI IACT2I 0C21 
___

_

_ _ _ _ _ _ _ _ _ _  

I~~~~~~~~~~~~~~T

_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _  
Ii~i. _ _

TD1I Dl 1TS11 Si TD2I D2 1TS21 S2

FU1 FU2 R 1. . .R 4

Fl F2

D B 
FT

Figure 5.1. The DS of the Examp le Design .

- - - -  -~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ -
V 
~~~~~~~~~~~ -

~~~~~-~~~~~~~~~~~~~~~~~~~~ — _ . - . -



- -  - - - -~~~~~~~~~~~~~~ ~~--V .- - --- —---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~

60

The opera t ion  is performe d on one of the m u l t i - p u r p o s e  func t i on  u n i t s .

The f u n c t i o n  u n i t s  are shown as FU 1 and FU2 , and they perform a variety of

(unspecified for this example ) dyadic operations. The instruction register

IR receives new i n s t r u c t i o n s  f rom the memory da ta  r eg i s t e r  MD. 1iie MD is

the I/O port for the memory M.

The i n s t r u c t i o n  execut ion  breaks  down into more basic S t e- p s .  The

c o n t e n t s  of the r eg i s t e r  spec i f i eo  b y A is moved over data  bus DB to either

r e g i s t e r  Dl or D2 , depend ing on whether  FU I  or FU2 has been s e l ec t ed  to per-

form the o p e r a t i o n .  Next , the c o n t e n t s  of the  reg i s t e r  s p e c i f i e d  b y B is

moved over DB to e i t h e r  reg i s t e r  Si or S2 ( aga in  depending on which f u n c t i o n

u n i t  has be en  s e l e c te d ) .  The function unit performs the operation taking the

contents of r e g i s t e r s  Dl and Si ( i f  it is F U I ) ,  or D2 and S2 ( i f  it is FU2 )

as its operands. It deposits the result into register Fl (if it is FUI),

or F2 (if it is FU2). This result is then moved over DB to the reg ister

specified by A. This basic instruction execution process can undergo some

modification as we shall see ,

In structions are  issued to IR whenever there are available function

units to Xi- ~ u t ~~- them. hlowever , the reg isters specified by f i e lds A and B

may be being UScCi by previousl y issued but uncomp leted instructions . This

is reso lved  b y the forwarding algorithm. As part of this algorithm , tag

reg isters TR1 through 11(4, TDI , TSI , TD2 and TS2 , each two bits long , are

a s s o c i a te d  w i t h  r pisters RI through R4 , Dl , SI , D2 and S2 respectivel y.

In decoding each instruction the DS checks the tag registers of both of the

specified registers. If they are both 00 the execution of the instruction

can proceed , and the tag register of the register specified by A is set to

01 ( i f  FU I is to  p e r f o r m  the opera t ion  s p e c i f i e d  b y the instruction), or

10 (if FU2 is to perform the operation). The non-zero value in the tag

It.. -p -
~~~~~. . -ntn~~~~rsr ~~~~-t--.t~~~~~ ~~~ V. fl&_ -- V. — -


_
-~~~~V . -- -~~~~~~~~~-~~~ --

61

r eg i s ter i n d i c a t e s t ha t the c o n te n t s of the associa ted re~~ist er are in the

process of being changed by an instruction execution , and it also indicates

f rom which f u n c t i o n u n i t the new con ten t s are to come . I f , when decoding an

i n s t r u c t ion , e i t h e r of the tag reg isters does not contain 00, it indicates

to the CS t h a t the as so c i a t ed r e g i s t er (s *) w i l l be used to r ece ive the

r e s u l t of an i n s t r u c t ion which was issued e a r l i e r , and which is s t i l l in

t he process of being exe ’cute’d. Hence’ , the c u r r e n t i n s t r u c t i o n execut ion must

w a i t for the’ r e s u l t of th te e a r l i e r i n s t r u c t ion e xe c u t i o n . The i s su ing and

execution of further instructions ceni ld be do layed at this point until the

required result is in. However , the forwarding algor ithm avoids th i s po ten t ial

i n e f f i c ie n c y b y sending the n o n — z e r o t ag (s~~) over bus TB t o the’ a p p r o p r i a t e -

function unit , in lieu of the r e su l t , t o rose ’ r y e ’ that unit for when the

result is in. Next the tag r e g i s t e r of th t e r e g i s t e r s p e c i f i e d b y A is set

to 01 (i~ F’Ul is to perform the operation specified by the i n s t r u c t i o n) , or

10 (if F1J2 is to perform the’ operation). (Note that t h is ma y invo lve over -

writ log n o n — z e r o data in the tag reg ister .) The next i n s t r u c t ion can now be’

issued .

If the A fi e ld of an inst ruct ion c a l l e d for the c o n t e n t s of R i as an

ope rand , and the instruction ’s operation was to be performed by FU ! , and

furthtt’ r that the t a g r et ; i s ter a s s o c i a t e d w i t h R I , name ly TR 1 , was non-zero ,

then the contents of TR1 would be moved over TB to TD1 , and TRI would be set

to 01. Also , if the register called for by field B of the instruction was in

use , thc con ten t s of i t s tag register would be moved to TSI. (TD2 and TS2

wou~~ be the tag destinations , if FU2 wa s the f u n c t i o n u n i t to be u s e d .)

~Since this examp le has only two function units whose operations are not
p ipelined (imp lying that their input registers are i to t allowed to be changed
until their operations are complete and their results have been output),
these cases do not occur.

~~~~~~~~ V.~~~~~~~~~~~~~~~~~~~~~~~~~~~~
_
~~~~~~~~~ V - ~~~~~.


_ _ _ _ - - V V. ~~~~~~~~~~~~ ~~

62

A suimttary of the i l it er p r e t a t ion s p laced on the tag data is given be’ low in

T a b l e 5.1.

I ’Ri (i = l , . .. , 4)

00 Data available in RI

01 Ri in use , r e s u l t e xpec ted f ront FU I

10 Ri in Use ’ , r e sc i I t expected f r o m FU2

‘rDl or 151 TD2 or 1’S2

00 00 Data in U or S

* 01 R e s u l t expec ted from FIJ I

10 R e s u l t expected f rom FU2

Table 5.1. Tag Data .

In i t s e x e c u t i on of the d y a d i c operation specified by OC , function

unit i first checks to se’e’ if V / (T D i , TSi) = 0. If it does , it i n t e r p r e t s

t h i s to m ean t h a t both operands are present in Di and Si. It can then

proceed with the operation. If the above cond i t ion is not t rue (i .e . the

function unit has received non-zero tag data instead of operand data), the

u n i t w a i t s u n t i l it ls. When it comp letes i ts operat ion and p laces the

r e s u l t in Fi , it broadcasts this result to all registers whose tag r eg i s te r s

contain data agreeing with the two bit code associated with that function

unit (see Table 5.1). In many cases , therefore , res u lts are “forwarded”

straig ht to the D or S registers of thc function units , rather than going

“See previous footnote.

~~~~~~~~~~~~~~~~~ V . V . V .  ~~~~~~~~~~~~~~~~~~ - --~~~~~~~~~~ V. - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~



63

via any of the reg i s t e r s  Ri through R4. When a broadcast result reaches a

register , the’ ~ - s e c  i a ted  tag r e g i st e r  is rese t  to 00. In the case of

f u n c t i on  u n i t s  w a i t i n g  on operands t h i s  is the ’ go-ahead to s t a r t  opera t ion .

This algorithm has the property of preserving essential precedences

in the instruction stream , while allowing independent instructions to be

executed in an order which is dictated only by the availability of a function

unit. When the dyadic operations can take a long time compared to the

register-to-register movements , this makes for efficient utilization of

the multi p le function units.

Figure 5.2 illustrates the algorithm in operation on a stream of four

instructions. This is for the DS of Figure 5.1. The contents of the-

registers and their tags are shown at key time s in the execution process.

5.2 I’he CHDL Program for the Examp le Design

Figure 5.3 shows the CHDL program for the examp le ~Icsign . Notice that

we’ have use-el two “ l e x i c a l ”  i n d i c e s  i and j. These take values from the sets

t l , 2 , 3, -~+ 1 and tD ,S} respective ly. Titus in Figure 5.3(b ) we have used RAi to

stand for the- four blocks RAI , RA2 , RA3 and RA4 . Furthermore , within each

block i is rep laced with the appropriate’ value 1 ,2 ,3, or 4. Similarly in

F’igure 5.3(e) we have used DECTjI to stand for the two blocks DECTD1 and

DECTSI.

Figure 5.4 shows the block dependencies. If one block in the program

calls anothe r ,* this relationship is represented in Figure 5.4 by a downward

sloping line from the calling block to the one called. Precedence between

blocks called from the Sam e block is not represented , neither is the block

*Borrowfng a term used in software to desc r ibe  an analogous situation , we
say that block A calls B if A has a process-call statement whose ID matches
B ’s ID.  

_~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- - - ~~~~~~~V.



_ _ _  _ __ _  V.V.

64

-‘ Instruction decode , possib’e wait , and tag /operand
distribution .

I Function unit performing operation and then
broadcasting result.

~~~~ T’~-~1 Function unit waiting for arguments.
I- ~~ Time

1.R1 =~— R1* R4
_ _ _ _ _ _ _ _ _ _ _ _ _

2.RN— R1*R1 I f~ 7z~1 FU2 I
3.R4-~---R4-R2 ,/J i—I1Q:1U
4.R3=~~R3+R2/ -

/

J

- ~~~~~~~

_ _

TRI 00 01 10 10 10 10 10 10 00
Ri A A A A A A A A A 2 D2
TR2 00 00 00 00 00 00 00 00 00
R2 B B B B B B B B B
TR3 00 00 00 00 00 00 01 00 00
R3 C C C C C C C C +B C +B
TR4 00 00 00 00 01 00 00 00 00
R4 D D D D D D - B D - B D - B D - B
TD1 00 00 00 00 00 00 00 00 00
Dl — A A A D D C C C
TS1 00 00 00 00 00 00 00 00 00
Si — D D D B B B B B
TD2 00 00 01 00 00 00 00 00 00
D2 — — — AD AD AD AD AD AD
TS2 00 01 01 00 00 00 00 00 00
S2 — — — AD AD AD AD AD AD

Figure 5.2. Illustration of the Forwarding Al gorithm.

- - V.~ S - ~~~~~ 5 ~~~
-~ — -

—V.—-

65

MA lN

While (ON)
~~

1) FETCH
2) EXEC (1,)

FETCH
I) MD ‘ M
2) IR ~~V. MD (1)

3) PC .- INC (1)

EXE C

1) Wai t (ACT1AACT2)

2) TST (1)

TST

Decode (ACT I ,ACT2) as

00 ~ TFI
01 - TFI
10 TF2

11 ~ ERROR

TFI TF2
Trigge r Trigger

1) PREDCDI 1) PREDCD2

2) DCD&EXI 2) DCD&EX2

Figure 5.3(a). The Examp le Design .

--V ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-—~~~~~~~~
- —

~~~~~~



66

PREDCD1 PREDCD2
l) A C T I - l  l) ACT2 4’- I

2) FU 4- 01 2) Ff1 4- 10

3) OCl 4- OC 3) 0C2 4- OC
4) DBUS ~l) (2) 4) DBUS [1] (2)

5) DBUS [2] (4) 5) DBUS (2} (4)

DBUS
Mutex (l,3)( l ,4)(2,3)(2 ,4) (3 ,4)

1) DECA
2) DECB
3) BCASTI
4) BCAST2

DECA DECB
Decode (A) a s Decode (B) as

00-~~RAl 00~~~RBl
01 —

~ RA2 01 RB2

l0’~ RA3 l0~~ RB3

l1~~~ RA4 ll~~~ RB4

RAi RBi
Decode (TR i ) as Decod e (TRi) as

00 --

~ MVA i 00 MVBiV

None ~ BSYA 1 None ~ BSYB i

Figure 5.3(b). The Examp le Design.



V ~~~~~~~~~~~~~~~~~~~~~ ~~~- - V - - ~~~~~~~ -- - - - -V - - -- - V - -  -V— --- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - V - - - V — -  -~~~

67

MVA i MVBi.

1) TRi 4- FU Decode (PU) as

2) CHKA i 01 -
~ Si ~- Ri

10 S2 4’- Ri

None ~ ERROR

CHKA i
Decode (FU) ~~ BSYBi

01 ~ Di 4- Ri Decode (Ff1) as

l0~~~ D2 4- Ri 0l~~~ TS l4-TR i

None ~ ERROR 10 ~ TS2 4- TRi
None ~ ERROR

BSYAi

1) CHKBAi

2)  TR i 4- FU (1)

CHKBAi

Decode (FU) as
01 ~ TD1 4- ‘rRi

10 TD2 4- TRi
None =~ ERR OR

Figure 5.3(c). The Examp le Design.

- - - - — -  V.—------- - ~~~~~~~~~~~~~~~~ —-~~~~~~~~~~~~~~~~~ -- - 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V V . -V-~~~~~~~~~~~~~ --- -’ V.- --- - -— - V.

68

DCD&EX1 DCD&EX2

1) Wait (V/ (TDI ,TS 1)) 1) Wa it (V/ (TD2 ,TS2))
2) Fl 4- Dl (~~~~) Si (1) 2) F2 4- D2 S2 (1)

3) DBUS [3] (2) 3) DBUS [41 (2)

BCAST 1 BCAST2

I) DEC1TRJ I) DEC2TR1
2) DECLTR2 2) DEC2TR2

3) DEC1TR3 3) DEC2TR3
4) DEC1TR4 4) DEC2TR4
5) DECTD2 5) DECTD1

6) DECTS2 6) DECTS I
7) AcT1 4- 0 (1 ,2,3,4,5,6) 7) ACT2 4- 0 (1 ,2,3,4,5,6)

Figure 5.3(d). The Examp le Design.

__ __ __ - ~~~~~~~~~
VV. - V. - V~V.__ ~V.___:V_2,_,_V.___V _ _ _ _ V _ _ _ _ _ _ X_V.~V._S~V .__ U_ _ _ _ _ _ _~~ ~_ _ . ‘_L_ t_ l__ ,_ __ _ sLflrt,± — __ _~ _~-!,&_- tt__ _____ - -—__ - ~~‘———- --~~ . ~______V.S ~~__ ____ _ _ ________ _V~~___ __& _____ _,~_ V_____V.___V ___V,__

V -

r - ~~~
-

69

DECITRi

Decode (TRi) as
0 1 = ~~ RiFl

None ~ Null

RiF1
1) Ri ~- Fl

2) TRi 4- 00

DEC2TRi

Decode (TRi) as

10 RiF2

None ~ Null

RiF2
1) Ri 4- F2

2) TRi 4- 00

DECTJ1 DECTJ2

Decode (Tjl) as Decode (Tj2) as

10 jlF2 01 ~ j 2F l

None ‘~ Null None ~~ Null

j l F 2 j2 Fl

1) jl 4- F2 1) j2 4- Fl

2) Tj l 4- 00 2) Tj2 4- 00

Figure 5.3(e). The Examp le Design.

- - - - - ~~~~~~ - - ~~~~ - - -- - ‘~~~~~~~~~~~~~~~~ =- - -~~~ ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~ V.~~~~ - - V . ---’ -- ~~~

70

o 000
O~~Qo O i O \ 0

~/ \
\
\ 0/ \0 / \3

0’ 0 0
00 , \ O O
0 0/

-V
-

~~~~~~~~~~~~~ C
0 Q 0 0

®~~CO ~

- 

~~~~~~ E*- C~~
--eeeo -

000
Figure 5.4. The Block Dependencies.

_ _

71

type (i.e. PROC , DPROC , MPROC, etc.). The shorthand of using the lexical

indices of Figure 5.3 has been dropped , and each block ID has been w r i t t e n

out in full.

5.2.1 The MAIN Block

This is the highest block in the hierarchical structure of blocks

(see Figure 5.4). It therefore represents the most simp le descr iption of

the target system. It partitions the system , which we have called MAIN,

into two subsystems , specified by bLo cks FETCH and EXEC. FETCH is run first,

and upon its comp letion EXEC is run. This sequence is reinitiated as long

as the ON flag is set. As may be guessed , the names are mnemonic ; FETCH

describes a process that fetches an instruction from memory and EXEC

describes a process that executes it.

5.2.2 The FETCH Block

This decomposes into three register-transfers. These move the contents

of the memory location (M) pointed to by the program counter (PC) (the

contents of the memory location is assumed to be an instruction) into the

memory data reg ister (MD), and then into the instruction reg ister (IR).

Concurrently with this last register-transfer the contents of PC are incre-

mented. (iNC is a functiona l block whose output is its input plus one.)

5.2.3 The EXEC Block

The flags ACT 1 and ACT2 are used to ind icate to the CS the avail-

abili ty of FiJi and FIJ2 , respectivel y. If FUI is busy ACT 1 is set, simil ar l y

for FU2 and ACT2. Thus the process described by block EXEC waits until at

least one of the function units is available before proceeding with the

execution of the instruction in IR.

_

- - - -----—--~~---- -- ~~~~~-— -
~~~~~~

—--V.—
~~~~~~

’

72

5.2.4 The TST Block

This block is called by block EXEC. It describes a process that

assigns the execut ion of the instruction in JR to either block TF1, if

FU1 is available (i.e. ACT1 = 0), or else to block TF2. The choice is based

on the two bit value (ACT1, ACT2).

The occurrence of (ACT1 , ACT2) = 11 at this point in the operation

of the system is clear ly an error . This is dealt with by block ERROR ,

whose details we have not specified .

5 .2 . 5 The Blocks TFI and TF2

These two blocks describe similar but mutually exclusive (as a

consequence of the decode process TST) processes. TFi (i1 ,2) comprises

process PREDCDi followed b y process DCD&EXI. PREDCDIV. describes the move-

ment of data and/or tags specified by fields A and B of the instruction in

IR, from any of the registers Rl , R2 , R3 or R4 to function unit i. DCD&EXi

describes the execution , by function unit i, of the operation specified by

the instruction , and the subsequent broadcasting of the result to the

reg isters and function units.

Since TFI and TF2 are TPROC s , both DCD&EXI and DCD&EX2 can over lap

with the FETCH process and the first part of the EXEC process up to but not

including PREDCD1 and PREDCD2 , respec tively. Assuming the function units

are initially not busy this allows the following type of occurrence: the

system can fe t ch an instruction , issue it to a function unit , fe tch a sec ond

instruction , issue it to the other func tion unit , then finall y fetch a third

instruction . At this point , the possibility of a wait (based on the avail-

ability of a function unit) at the beginning of process EXEC determines

when this th ird instruction gets issued to a function unit. Thus the system

-

-

_ _ -V.- - - -~~~~~~~~~~~~~~~~~~~ --

keeps two ins t ruc t ions execut ing concurrent ly , one in each funct ion uni t ,

and a th i rd read y for issue in IR. The deta i ls of this wi l l become clearer

as we cont inue wi th comments on the program of Fi gure 5.3.

5.2.6 The Blocks PREDCD 1 and PREDCD2

These ~~~ liminary decode processes set up some status registers to

assist in tag manipulation and function unit operation . They also call

other b l o c k s to p e r f o r m da ta and/or tag movement . Sp e c i f i c a l Ly , i~’t PREDCD IV. ,

flag ACTI is set (indicating that FUi is to be busy). Register PU is set

to 01 (for i=l), or 10 (for i=2) . This register is used to indicate which

function unit is to perform the instruction ’s operation , and as a source for

tag data. The operation code (in fie ld OC of IR) is sent to the operation

reg ister of th e function unit (OC1 or 0C2). Finall y, two dec ode processes

are initiated to determine from which registers the instruction ’s operands

are to come . These decode processes , DECA and DECB , are called sequentiall y,

and the’y are called through a mutual exclusion process , DBUS.

5.2.7 The Block DBUS

This mutual exc lusion process ensures that the movement of data

and/or tags from the registers to the function unit , the broadcasting of

results from function unit 1, and the broadcasting of results from function

unit 2 do not interfere with one another as a result of using a con~non

resource, DB. (BCAST1 and BCAST2 are the blocks that handle the broadcasting .

They are discussed later on.)

Notice that PREDCD1 and PREDCD2 are mutuall y exclusive in time (since

,~~1 ‘~d TF2 are). Thus DBUS and,hence,DECA and DECB can be shared by them

~l - ~’~t conflict . Also , since the decode processes , DECA and DECB , are

4 ~~ ~~~
-
~~! m , I ly (see- the order information of statements 4 and 5 in

— ~~~~~~~~~~ V . V V .

- - - V.~~~ V. ~~~ - - - - - V - - - - - --~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~~~~~~~

74

PREDCD I and PREDCD2) they do not i n t e r f e r wi th one another even though some

reg i s t e r - t r a n s f e r s tha t they ultimately invoke share DB. Thus it is not

necessary to inc lude the pair (1 ,2) in the mutual exc lusion condition of

DBUS .

5.2.8 The Blocks DECA and DECB

The blocks DECA and DECB decode the operand f i e ld s A and B respect-

ive l y , to f ind out which of the r eg i s t e r s , Ri , R2 , R3 and/or R4 , are to be

used by the instruction in IR. Based on the result of these decode pro-

cesses , control is passed to other processes to handle the movement of data

and/or tags between the reg isters and the function units.

For examp le , in DECA , if A = O l , control passes to block RA2. This

moves the contents of R2 (using MVA2) or its tag (using BSYA2) to the

designated function unit .

Similarly, for examp le in I)ECB , if B =00 , control passes to block

RBI. This moves the contents of R I (us ing M V B I) or i t s tag (using BSYBI)

to the designated function unit.

5.2.9 The Blocks RAi and RBi

The blocks RAI ,.. .,RA4, RBI ,..., and RB4, describe decode processes.

Block RAi (i = 1 ,... , 4) c a l l s b locks MVA i if tag register TRi OO (i.e. if

register Ri is not being modified by an instruction execution). Otherwise

(i.e. Ri is being modified) it calls block BSYAi. Similarly RBi calls

MVBi or BSYB1. An A as the penultimate character in a block identifier

indicates that the block describes one of the processes that handles register

or tag data specif ied by operand fie ld A. Similar comments apply for B as

the penultimate character in a block identifier.

L - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -= - -~~ -~~~~~- -~~~~ - -

- - - ---— V.~~~ -~~~~~~~~~~~

75

5.2.10 The Blocks MVA I and CHKA i

The block MVA i (i I,... ,4) rnove5s the contents of FU into TRi. This

i n d i c a t e s tha t the c o n t e n t s of Ri are to be sent to FUx (x = C (FU) 10), and

that its new contents will come from FUx. Concurrentl y with this , MVAi calls

CHKAi. This block checks the value x to determine which function unit is

to r e c e i v e the c o n t e n t s of R i . It t hen t r a n s f e r s these d a t a wi th the

register-transfer Dx ’- Ri.

5.2.11. The Blocks BSYAi and CHKBAi

C o n t r o l passes to b lock BSYA i (i = l , . . . ,4) in the event that Ri is

bu~~ (i . e . is w a i t i n g on a r e s u l t f rom one of the f u n c t i o n u n i t s) . This

bloc k moves the c o n t e n t s of t ag TRi to the f u n c t i o n u n i t in l ieu of the

contents of Ri. Next it updates TRi to indicate from which function unit

Ri will receive its new value .

Moving the contents of TRi is a c t u a l l y done b y CHKBAiV. . This b lock

f i r s t c h eck s the- c o n t e n t s of FU to de t e rmine which f u n c t i o n un i t is to

receive the c o n t e n t s of TRi .

5.2.12 The Blocks I~1VBi and BSYBi

The block MVBi (i l ,...,4) is similar to block MVAi. However ,it

pertains to operand field B rather than A. A reg ister specified by

operand field B of an instruction is used only as a source of data. There-

fore its associated tag register is not changed . This accounts for the

difference between MVBi and MVAi.

The block BSYBi (i = la ... ,4) is similar te block BSYAi. Its dif-

ference is also a result of it pertaining to operand field B.

-

~

- - V. --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - V.~~~~~~~~~~~~~~~~~~~ - - - - - _ _

—~~ ‘ - — -V -VV.- ‘-- -

7b

5 .2 . 13 The Blocks DCD&EXI and DCD&EX2

The blocks DCD &EX I and DCD &EX2 de sc r ibe the processes tha t cont ro l

the ope ra t ion of FU I and Ff12 , r e s p e c t i v e ly . DCD&EX I w a i t s u n t i l both the

tag reg isters (TOl and TSI) are set to 00 before performing the dyadic

operation , specified by the- code in OCI , on the contents of the input

regist ers (Dl and Sl) . The result is p laced in reg ister Fl. This is then

broadcast , conditionall y, to registers RI, R2 , R3 and R4 as well as to the

input reg isters 1)2 and S2 of Ff12. Ibis broadcast is described by b l ock

BCASTI and is called by DCD&EXI through the mutual exclusion process DBUS

(Se e section 5.2.7). The process described b y DCD&EX2 is similar .

5 .2 . 14 I h i e B l o c k s BCAS’l l and BCAS’l 2

‘l’he b l o c k BCAS’i l describe -s a broadcast-like process which moves

the contents ot F L to any of t he - re g isters R I , R2 , R3 , K4 , D2 or S2 , whose

associated tag reg isters a r e - se t L i .i U i . (‘1l le-s& - t ag re~giste’rs are TR 1 , l R2 ,

TR3 , I R-~ , 1 1)2 and 1S2 , F e - s p e c t iVe’ l y . ‘I U po n LII I coup l e t ion of the broad-

cas t the- I l a g At1 I I _ s _ s e t te) U to i n d i c a t e - t o Lii i CS that Ff11 i s f r ee - to be

r e u s e d . Th ìe ~~~~~~~~ e S _ s d~~scr ib ed b y RC A Si 2 is s imi t a r .

5 . 2 . 1 5 ‘the Re m a i n i n g B l o c k s

The r e m a i n i n g b l o c k s are DECTR 1, R I F I , DEC2TIU , R 1F2 (i l~~. .. ,4) and

D E C T j I , j l F 2 , 1) l- CT j 2 , j 2 F l (j = D , S) (see 1-igure 5 . 3 (e)) . These b l o c k s des-

c r i b e processes tha t p e r f o r m the reg i s t e r - t r a n s f e r s r e q u i r e d b y b locks

BCAST I and BCAST2 . Appropr i a t e tag r e g i s t e r s are decoded to see which

reg i s t e r - t r a n s f e r s are to be p e r f o r m e d .

For examp le , i f BCAST I is a c t i v e , DEC1TRI is called (among other blocks),

and it dec ’dt-s tag TRI to determine whether Fl is to be sent to RI. If TR1 = 01

t h i s r e g i s t e r - t r a n s f e r i _ s t a be ca r r i e d out . This is done b y the process

——— 2 :~~~
-
~~~~~~~~~ - -  ~~~~

_ . - - -~ - --



-- - -- -~~~~~~ — -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --- --- ~~ - 

77

described in block R1F1. R1F1 also resets the contents of TRI to

ind icate that register RI is no longer being modified by an instruction

execu t ion .

5.3 Comments on the Example Design

This examp le dc-_ sign illustrates the capability of the CHDL to

describe various types of concurrenc y, as well as mutual exclusion . These

are e s_ se - u t ij l  i n g r e d i e n t s  fo r  any f o r m a l i s m  that seeks to c h a r a c t e r i z e

mul t i p r o c e s s i n g  sy st e m s .

Also no te ’ , f i r s t ly , t h a t  the  END symbol was omitted in F igure  5.3.

S t r  l e t  lv  _ sp
~- al ~ ing , the ’ b locks should  have been arranged l inear l y wi th  End

as the- ’ last symbol in the las t  b l o t -k . Secondly, t ha t  the “ l e x i c a l ”  index

used as a shorthand could  be i nc luded  in the CHD L ’ s syn t ax  and inte rpre ted

in a way a n a l o g o u s  to open s u b r o u t in e s  or macros  found in pro gramming

languages .  And f in a l l y ,  t h a t  the  CHDL could  be improved b y i n c l u d i n g  the

f ac i l i ty  fo r  d e c l a r i ng  d a t a  types  (busses , r e g i s t er s , s u b f i e l d s  of

re -g i~~t i c s , e t c . ) .  The l a s t  improv ement  was made b y Smith in [Smi 7 7 J ,  whic1.

de sc r i be s  a simu lat o r  for  a subse t  of t h e  CHD L .

- - - : - -~~~~~~-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~ - —- --



7B

6. THE SCOPE OF THE CHDL

APL , or some variant , has been adopted by many proponents of CHDLs as

a fo rma l i sm to  de sc r ibe  the f u n c t i o n a l  a spec t s  of r e g i s t e r - t r a n s f e r  logic.

(See for examp le [Fal 64], [Fri 67], [liii 7 3 ] ,  tAze 75] and [Fra 75).)

Taking th i s  consensus  as an acknowledgement of APL ’ s capability to char-

a c t e r i z e  a d e q u a t e l y  the functional aspects of the 1)Ss of digital systems ,

we shall onl y examine’ t h e  scope of the  CHDL with respect to the design of

CSs.

One very cousnon model for CSs is the flowchart. Ihis is evident from

the large nu~_ sb er of dig i tat systems that are control led by microprograms.

The Structure - Theorem [Mu 72] shows that any flowchart can be represented

as an expansion of the fol lowing constructs:

1, f then g

2. if p t h e -t i  f els’e g

3.  while p do f

wiie re f and g are I lowe-harts wi th si t- I liput and one output , arid , then , if ,

else , while - , do ale logical conuiectives. If the term “fl owchart ” is inter—

p r e t e d  as “pr o c e s s ” ( i i i  our se l l _ s e ) ,  the  f o l l o w i n g  consequences  a r i s e :  f

and g can be i n ter p r et e d  as p r o c e s s e s  d e s c r i b e d  b y b locks  in the  CHDL. This

follows since such process es are controlled by a single link , and ,hence, can

he thought of as having one input and one output (the reques t  and acknowle2 ge

signals of the link ’. Furthermore , the above three constructs are then seen

to occur in the CHDL: 3 exists explicitly - the WPROC block , 2 ex is ts in a

more ge-n e-cal form - the DPROC block , and 1 also e-xi sts in a more general

form - the order i n f o r m a t i o n .  Hence , the scope of the CIIDL encompasses that

of the flowchart model.

——  —
~~~

-—
~~

-—----V. -----—~~ --’-— ~~~~~~~~~~~~~~~~~~
-
~~

-— -.-
~

-—
— -~ V -

~~~~~~~~~~~ ~~~~~~~~~~~ 
- ___________



79

In addition to this logical sufficiency the CHJ)L has considerable

scope for parallelism , facilitating the design of high performance systems .

Firstl y, simple unrestricted parallelism can be described. This qualifi-

cation refers to the fact that the order informat ion allows parallelism to

be described without unnecessarily binding processes together , as is often

the case with restricted methods of represent ing  p a r a l l e l i s m, such as the

use of next or and opera to r s  (B e- I 71] [Wir  66]. (These two particular

opera tors  r e s t r i c t  a language to series/parallel structured processes.)

Second ly ,  over lap  or assemb l y - l i n e  type  of parallelism can be described using

‘I’PROC b l o c k s .  l- i i i a l l y ,  mutua l  exc lusion can be described using MPROC b locks .

This allows re-solution of some simple re-source conflicts that arise as a result

of parallelism. (Other resource conflicts , such as shared blacks and shared

reg ister—transfers , are- handled by SR modules.)

The above discussion suggests that the- first of the two purposes of

t h i s  t h e s i s  s t a ted  in the  In t r o d u c t i o n  ( to  d ev e l o p  a C1-IDL with  s u f f i c i e n t

scope to dc-scribe mii i ti processing systems) has been s a t i s f i e d .  Neve r the l e s s ,

it  should he p o i n t e d out that tunic com prehensive mode-Is e x i s t .  Typ ica l  of

these is the PN which can desc r ibe  CSs t ha t  are ou ts ide  the scope of the CHDL.

Howeve r , much of the  a d d i t i o n a l  scope these ’ a f f o r d  is of ques t ionab le  use ,

and it is our opinion that the considerable complexity of any PN that models

an en t i r e  CS can con fuse  r a t h e r  than  aid the design process .  (Bear in mind

that our use of PNs is to define behaviors , and then later to prove assertions

about those behaviors .  We do not use them as a design aid.) 

~~ ~~ • - -~~~ - . ---t ~~~~~~~~~~~~~~~~~~~~~~~~~ 



- -

80

7. PROOF THAT SYNTACTICALLY COR RECT CHD L PROGRAMS DESCRIBE

SYSTEMS WI-II CEI HAVE DEADLOCK-FREE CSS

This chapter introduces some additional syntactic requirements. Then

it is proved , using a method for characterizing the behavior of networks of

CHDL blocks , that syntacticall y correct CHDL programs describe systems which

have d e a d l o c k - f r e e  CSs.  C o m p u t a t i o n a l  comp l e x i t y  a rguments  show tha t

checking the syntax (excluding the APL expressions of the register-transfers)

is very simp le. it is concluded that the second purpose of this thesis has

been met (to specif y the CI-IDL so that syntacticall y correct programs des-

cribe sys tems  wii ieh hav e d e a d l o c k - f r e e  CS5) , w i t h o u t  r e s o r t i n g  to a comp lex

syn-t ax.

7.1 The Additional Syntax

There are some additional syntactic requirements , not easily exp ress ed

b y a c o n t e x t - f r e e  grammar , that CHDL programs must satisfy. Consequently

they were- mi nt represent ed in t h e  s yn t a x  of Fi gure  3. 1 but are instead l i s ted

below . In the ’ r ema inde r of this discussion the phra se “s y n t a c t i c a l l y  correct ”

(SC) shou ld  be’ in c - r p m _ s - i  e-d to  mean “s a t i s f y ing  the  s yn t ax  of Fi gure 3.1 and the

a d d i t i o n a l  syn t ax  (AS ) b e l o w ” .

AS I .  The inter-block connections invoked by the process-call statements
mus t  form a p a r t i a l  o rde r ing .

AS2 . Every  b l o c k  ID in a p r o c e s s - c a l l  s t a t e m e n t  mus t  have a uni que
cor responding  b l o c k .

AS3. The ad j acency  s t r u c t u r e  of every PROC and WPROC bloc k must  form
a partial ordering with a un ive r sa l  lower bound .

AS4. Each statement label must be unique within its block.

A55. In every DPROC block the bit string in the BITS field of every
statement must have the same length .

AS6 . If there are less than 2
L 

(Z-=number of bits in the BITS field)
statements in the DU ST of any DPROC, one of them must have None
in the BITS field .



81

AS7. Every statement label in an MPROC block must occur in at
least  one of the pairs of the mutual exclusion condition.

AS8. Every number in the pairs of the mutual exclusion condition
of an MPROC must occur as a s ta tement  l abe l .

No t i ce  tha t  these add i t i ona l  syn tac t ic  requirements  cover those

stipulat ions about the syntax of the CHDL, noted as footnotes in Chapter 3,

that were not covered b y the con tex-f ree  granumar of Fi gure 3.1.

7 .2  The Proof

To prove that SC CHDL programs describe systems which have deadlock-

free CSs , freed om from deadlock is defined in terms of process behavior

(i.e. in terms of PNs), and then all SC CHDL programs are shown to satisfy

this definition .

In Chapter  4 we saw how to der ive  a PN tha t  de f ine s the behavior  of

a process described by a C}IDL block. This was derived from the block’s

under l y ing ne twork  of CS modu le s by using the PNs of the ten CS modules ,

C o n s t r u c t i o n  2 . 1 , and the  s imp l i f i c a t i o n s  of chapter 2 .  In the proof of

this section we- shall be’ concerned with whole CUDL programs , i.e. networks

of CHDL blocks. ln order to define the behavior of networks of blocks we

could also join the PNs of the blocks together using Construction 2.1.

However , it is convenient to take a slightl y different approach.

Consider a block in a network of blocks. Its behavior in such an

environment is defined by simulating its PN, B , according to the procedure

(modified from that in Section 2.1) below (see Figure 7.1):

P1

1. 94- T

2. Choose IT , a non-empty sub set of ri
~
.

3 .  M(p) 4- 1 Y p E ii



_ _ _ _  
~~~~~~~~~~~~~~~~~~~~

82

4. Compute the set of enabled t r an s i t i ons in e (li) .

5. Choose one t r a n s i t i o n t , E U.

6. If tE’r then ~ ~“ 0 -

7. Fire t .

8. If M(p) = 1 for any p En
1

_ fl then h a l t .

9. If e n T = ~ then M (p .)4- ...4” M (p .) 4- 0 go to 1.
11 im

10. Co to 4.

where ;

T = 1.t 1,.. . ,t) the set of transitions in B.

=
~~l’~~

”’
~ k1 the set of input p laces.

IT = i p. , . . . ‘p . a non-empty subset of ri
1 1 I

1. m
= t t . , . . . , t .) those transitions that are output transitions of

I
1m the p laces in ii . See Figure 7.1.

To u n d e r s t a n d P 1 two d e f i n i t i o n s arc n e c e s sa r y . F i r s t ly , the input

p l acc s~ of a block ’ s PN are those c o r r e s p o n d i n g to the c o n t r o l l i n g processes ,

or input links. Second ly, the ~~~,put places* are those corresponding to

p r o c e s s - c a l l s t a t e m e n t s , or output links. The simulation defined by P1

can then be thought of in the following way : A non-empty ‘ et , ii , of the

input p laces of B is marked wi th a token (th i s represents the act ion of the

environment on the block), the remaining input places are assumed to be

empty . B is simulated until all the p laces in IT empty and then refill with

• t oken . These tokens are then removed . A new IT is selected at random

*These terms are not to be confused with i nput and output places of transitions .
(See Section 2.1.) lt is required , if p is an input/output place with x and
y as its input and output transition , respective ly , that :
1. x is the onl y input t r ans i t ion of p.
2. y is the only output transition of p.
3 . p is the only input p lace of y.
4. p is the only output p lace of x.

_ _ _ _ ~~ . _~~~~_ __ _ _

p 1 t
1 ~ k

t
k

j~~~~
, _ i - -~ r.~ ~~

B

- 56I ~

Figure 7.1. A CHDL Blo~ k’ s P” .

- - —_V— =V.~ ~ V: V V . U L. ~~~~~~~~~~~~~~~~~ ~~ —V.V~~~ Va. .,,.a ~lS.S.fl..V..a..SSll4

--

84

(it may be the same as before), these p laces are marked and the procedure

repeats.

The random markings of the input places model the transfer of

control f r o m the b lock’ s environment to the b lock . When the block’s PN

has been simulated and those input p laces refill , removal of their tokens

corresponds to the r e tu rn of cont ro l to the environment. We assume that the

initial marking of B does not place tokens in any of the input or output

p laces. Thus under P1, simulation halts if the condition in statement 8

is true , because we require , in order to keep our PN interpretation con-

s i s t e n t wi th the behavior we are t ry ing to mode l , t ha t input p laces can onl y

be r e f i l l e d if they receive a token in the immediately preceding marking

phase of the- s imulat ion (s ta tement 3).

The output p laces of B are shown as q 1, . .. , q~ in Figure 7.1. Tokens

in these correspond to processes occurring in B ’ s environment that are

c o n t r o l l e d by B.

Two comments arc pertinent regarding the above PN model of the inter-

action of a CHDL program ’s block with its environment . Firstly , the concepts

of liveness and safeness , defined in Section 2.1 , still app ly to a PN simu-

lating under Ph,. Second ly, the behavior of a block’ s environment may be

such that only some of the Ti ’s can occur . To reflect this , the choice in

statement 2 of P1 can be limited to a subset of the set of all sets of input

places. We shall call this subset the environmental constraint (EC).

Freedom from deadlock can now be defined : A C}IDL program describes

a system whose CS is deadlock-free , if the PN5 for all of the blocks of the

program , together with their initial markings , are each live and safe (LS)

when simulated under P1 with their respective ECs.

85

This d e f i n i t i o n is in accordance w i t h an intuiti ve idea o f freedom

from deadlock , because P1 never halts , and no places or transitions ever

become excluded from the action of P1 , if the PNs are LS. Hence , the

processes defined by such PNs never reach a point from which they cannot

proceed.

Theorem 1: For every SC PROC bloc k ~ a PN’~ with a single input p lace , x , an

initial markin g, M (0,... ,O), and an EC ~[xfl , that is LS

under P1.

P r o o f : For ev er y SC PROC b lo c k a PN tha t is a s t rong ly connected

marked graph (in a marked graph every p lace has exactl y one

input transition and one output trans~~ ion) that defines its

behavior (see Section 4.1). A member of this class of PN5 is

LS if every circuit in its PN graph has exactly one p lace con-

taming a token (see (Corn 711 for more on marcked graphs).

Since’ EC= .~,x}}, the marked graph that defines the behavior

c i a n y PROC b lock r e c e i v e s a token in x each time P1 executes

i t s s t a t e m e n t 2 cth e choice [ci’ T~ is limited to ~xb . The input

p lace , x , is in every c i r c u i t of the marked grap h ; t h e r e f o r e ,

the s u f f i c i e n t c o n d i t i o n for LS , ment ioned above , is s a t i s f i e d .

Theorem 2: For every SC DPROC b l o c k a PN with a single input p la ce , x ,

an initial marking, M = (0,... ,0), and EC = (t x f l , t ha t is LS

u n d e r P1.

P r o o f : For every SC DPROC ~i a PN t h a t is a s t r o n g ly

connected state machine graph(in a state machine graph

every t r a n s i t i o n has exac t ly one input p lace

~It was noted in section 2.12 that there is , in general , no unique PN graph
associated with a particular behavior . Since we are primarily concerned
with the behavior , not its defining PN , it is sufficient to consider any
one of the set of PNs assoc ia ted with that behav io r .

_____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

86

and one output p lace) that defines its behavior (see Section

•+ .2) . A me mber of this c l a s s of PNs is LS if exactl y one

p lace ’ c o n t a i n s a token (see [He i 76] for more on s t a t e machine

grap hs ~ .

Since EC = [~ x}}, the state machine graph that define s the

b e h a v i o r of any DPR OC b lock receives a t o k e n in x each t ime

P1 ex e c u t e s i t s s t a t e m e n t 2 (t he cho ice for IT is l i m i t e d to

-~x~:). He nce , the condition for LS , mentioned above , is

s a t i s f i ed .

1heore ~ 3 : The- PN fo r an >11-: m o d u l e w i t h two i n p u t p laces , x and y , an

i n i t i a l m a r k i n g , M (O ,...,l ,...,O) (the one initial token

is in p lace S of the ME module ’ s PN - see F igure 2 . 1 0) , and

an EC = ~~ x 1, ~v) } or ~~ x ,y }) or ~~~~~~ ~~~~ ~x ,yiJ , is LS

unde r P 1.

Pr oof: Obvi ous from Fi,~ure 2 .10.

[h 1 C u l c f l : 4 : ihe }“~ for aim SR m o d u l e w i t h two input p Laces , x and v

an i n i t i a l aiL in g , M = (u , . . . , l , . . . ,O) (t h e one i n i t i a l t o k e n

L- in p l ace- S of the- SR m o d u l e ’ s PN - see F i gure 2.9), and an

E c = ~~~~~ ~y) } or y x , yb or t x ~~, ~~~~ ~~~~~~ is LS under P1.

Proof: Obvious f r o m Fi gure 2 . 9 .

The re ‘~~~~: The l’N for a I module - with a single input p lac e , x , an initial

= (0,... ,l ,...,0) (the one i n i t i a l token is in p lace - S of

the 1 module ’ s PN - see Fi gu re 2 . 7) , and an E C = ~j x } J , is

LS u n d e r P1 .

Proof: Obvious from Figure 2.7.

I-
AD AOS6 ill ILLINOIS UNIV AT LJRSANA CHAMPAIGN COORDINATED SCIENCE LAB FIG 9/2

A COMPUTER HARDWARE DESIGN LANGUAGE FOR MULTIPROCESSOR SYSTEMS. (U) N

SEP 77 T N MUDGE DAABO7—72—C—0259
UNCLASSIFIED R 787 NL

Obeui ___

m
END

8 - 78
DOG

87

Theorem 6: The PN for an I module with a sing le input place , x, an

initial mark ing, M (O,...,O), and ar~ EC [Cx}}, is LS

under P1.

Proof: Obvious from Figure 2.12.

Theorem 7: SC CHDL programs describe systems which have deadlock-free

CSs.

Proof: SC CHDL programs are acyclic networks of some combination of

PROC bLocks , DPROC block s, MPROC bl ocks , TPROC blocks , and

WPROC blocks . These can be viewed , for the purpo~e of this

proof , as networks made up from PROC blocks , DPROC blocks ,

block s containing single ME modules (MPROC blocks can be

thought of as networks of blocks containing sing le ME modules-

the translation procedure of Section 4.3 ensures that these

sub-networks are acyclic), blocks containing single SR modules

(the trees of SR modules used when blocks are shared can also

be thought of as networks of blocks containing single modules),

TPROC blocks (these contain a sing le T module), and bl ocks

containing single I modules (WPROCs can be thought of as two

block s networks : a b lock with a single I module followed by

a PROC block). The highest leve l blocks in such networks are

blocks containing single So modules (see Section 4.6).

Theorems 1 through 6 demonstrate that the behavior of net-

works made up from PROC blocks , DPROC blocks , and blocks con-

taining sing le ME, SR , T, or I modules satisfies our defini tion

of deadlock-free (assuming they are started in the correct

initial state), if the respective ECs (expressed in the state-

ment of each theorem) of the PNs defining the behaviors of the

blocks are also satisfied.

88

The ECs of the blocks in Theorems 1 through 6 are satisfied

if such blocks are called by blocks whose associated PNs are

LS. This condition ensures that the output places associated

with the calling blocks behave in a way that is consistent

with the apparent environment that P1 creates for a block

simulat ing under it.

The highest leve l blocks contain single So modules. Their

PNs (one is shown together with the appropriate initial marking

in Figure 2.3) are LS*. Therefore , since any network des-

cribed by an SC CHDL is acyclic , it follows in a finite number

of steps that all the ECs of the blocks of such networks are

satisfied. Hence , our definition of deadlock-free is satisfied ,

and SC CHDL programs describe systems which have deadlock-free

CSs.

Note thjt throughout the discussion on deadlock it was imp licitly

assumed that the register-transfer processes were never sources of deadlock ,

i.e. they took a finite , if unbounded , time to complete. In the next section

we shall d iscuss the “cos t ”, in comp lexity terms , of specifying the C1-IDL so

that SC programs in it have deadlock-free CSs.

7.3 The Complexity of Checking the Syntax of a CHDL Program

Computational complexity analyses are concerned with the “amount of

work” done by algorithms. For the purpose of this and remaining discussions ,

this is measured in terms of the number of operations which must be performed.

*The P1~s for So modules have no input places so it is sufficient to con-
sider them as simulating under the original procedure of Section 2.1.

89

7.3.1 Checking a CHDL Program Against the Syntax of Chapter 3

The first step in this check of a CHDL program is to take the string

of characters representing the design and to partition it into a sequence of

tokens , where a token is a string of characters that forms a single logical

unit.

The syntax given by the productions of Figure 3.1 can be simp lified if

the following logical units are tokenized : IDs, LABELs , DREGs , and BITS.

The resulting simplified grarimar is shown in Table 7.1. Notice that the

tokenized entities are now represented by a sing le generic terminal symbol.

Strings of symbols produced by this grammar can be checked for correct-

ness by the finite automaton whose control state diagram is shown in

Figure 7.2. (This implies the tokenized CHDL is a regular language ,

although it is not characterized by a regular grammar , as can be seen from

the simp lified grammar of Table 7.1.) The control states are shown as

circles , with the start and finish states labelled S and F respective ly. A

string is accepted as correct if starting in state S there exists a path to

F such that the arc labels taken in the order in which they occur in the

path agree with the string . Otherwise the string is considered to have a

syntax error.

For any input string no input symbol is examined by the above parsing

procedure more than once ; hence any input string is parsed in a number of

opera t ions linear l y proportional to the length o the input string. Thus

an algorithm for checking any CIIDL program for correctness need not have a

complexity of greater than 0(n), where n is the number of statements in the

program.

It migh t be argued that any such algorithm also has to tokenize the

logical units mentioned earlier , and that this could increase the degree

90

)

t,o fr’

Figure 7.2. The Finite Automaton that Checks the
CHDL for Correctness.

I

_ _ _ __ _ _ _ __ _ _ _ _-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— . .

~~~~~~~~~~~~~~~~~~~~~~~~~~

.

~~~~~~~~~~~~~~~~~~~~~



91

PGM 1. B )b$
B :: = baC
C :: P D M T W
P :: = 3.. bl)SI )
D :: = bd (x)eA
M :: = bmt (1,1) Ji. bl)S ~
T :: = btbl)Sbl)S
W :: = bw (x)fP
A :: = bg~S [ bk~ S) ( l~k~ S )b g=~S
S :: = a a[l] a4-x n v(x)
I :: = # (X)
X :: = 1 l ,X

Non-Terminals Equivalent In Figure 3.1

PGM PROGRAM
B BLOCK
C BLOC KBODY
P PROC
D DPROC
M MPROC
T TPROC
W WPROC
S FIELD2
I FIE LD3
A DLIST
X ORDER-INFO

Terminals

Dl
$
a tokenized IDs
1 tokenized LABELs
d Decode
x tokenized DREGs
C

m Mutex
t Trigger
w While

g
k tokenized BITS

Null

Table 7.1. The Simp lified Gramar



92

Set of BLOCK IDs

ftOCK ID that occur as
process-call
statements in the

___________________ block at left

B
1 C

1

B
2 C

2

B C
U U

Given u blocks with IDs B ,...,B1 u

Let C . c B, where B = 3.B1
,... ,B )

Let C = 3c 1 U.. .U C } a multiset (i.e. a set with some
U 

repeated elements)

Let ~Cj = V

If C . = [B. ,...,B. ~ the following is true for the
1 k inter-block partial ordering :

<B.,B. > ... <B., B >
1 1

1 
1

Table 7.2. Inter-block List.

- --~~~~~~~~~~ —~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ -~~~~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~~



93

of comp lexity of the algorithm. As long as there is a f ixed upper bound on

the number of cha rac t e r s  in a logical unit , this is not the case. Tokeni-

zing a particular string of characters would not be a function of n, but of

the f ixed bound .

One other point that  should be noted is that  no acc oun t is taken of

the fact t ha t  DREGs are APL expressions. They are tokenized as s ing le

symbols. In 0111cr words , our checker does not check their APL syntax.

(Th is would require a separate checker of a more complex type than a finite

~iutomaton.) What we are doing is factoring out that aspect of the syntax

check  ~i~ sLc iated with the CS and ignoring that associated with the DS.

This is compatible with the design approach outlined in the Introduction ,

whe r~~, from the viewpoint of the C}IDL, APL expressions which represent

functional blocks in the DS are regarded simply as mnemonics for identifying

t hos~ bl ocks.

7.3 .2 (~iiucking for AS1 and AS2

W require that the intcr-block partial ordering invoked by the

process-call ~iaLements is a true partial ordering (i.e. no circuits are

present in the corresponding Hasse diagram , or , to put it another way , no

bI~ cks eventuall y call themselves). Also , we require that every block ID

that occurs in a process-call statement has a corresponding block in the

CHDL program.  T h i s  assures us that the processes represented by process-

~a [I statcmcnts arc defined .

The validity of the inter-block partial ordering can be checked using

the topologic~~1 sort algorithm in [Knu 69]. A topological sort takes a

part iall y ordered set (in our case a set of CHDL blocks) and sorts the set

into a total ordering such that if B. <B~ (B~ and B. are bl ocks and “<“

—



94

is the binary relation “call s” that invokes the partial ordering) is true

for the original par tial order ing ,  it remains true for the total ordering.

If the sort fails , the set is not partially ordered . In particular its

~e~sociated Ilasse diagram contains at least one circuit. The input to the

al gorithm is the set of all pairs <B .,B .>, such that B. <B . is true for
1 ]  1 3

t h e  partial ordering. In our case this information can be input to the

al ri tlu ~i as a list of the form shown in Tab le 7.2. Using the notation

of Table 7.2 , it can be shown that the complexity of the topological sort

jI~ orithm (se e [Knu 69] for details) is O(u)+O(v). Notice that u equals

the number of elements to be sorted (the block lDs , B .), and v equals the

number of pa irs ‘- B ., B. > defining the partial ordering. This algorithm

can be made to abort premature ly if its input is not a true partial

urderiui~. Thus, checking the validity of the inter-block partial ordering

can ~il s o be achieved by an algorithm of comp lex ity O(u)+O(v), once th e

i~~~~ot li st ~~~~ h~ en comp iled from the CHDL program . The algorithmic

~~~ ;i l .~~~i L v  ol cotupiliii ~ such a list is 0(n) (n is again the number of

s t i t e l e t s in t he piogram) : a simple statement-b y-statement scan of the

pro ’~~im is sufficient. Therefore the overall algorithmic comp lexity to

check for the validity of the inter-block partial ordering is 0(u) ÷
O(v +O(n).

rh .. requirement that every bl ock ID that occurs in a process-call

statement must have a corresponding block in the CHDL program can be

checked for by an al gorithm which confirms that C ~ B (see Table 7.2 for

notation). This can be done by entering the B .s into a table , then

searching for each of the elements in C. The algorithmic comp lexity of

this operation is also 0(u)+0 (v) (see [Knu 73]).

L _ _ _ _ _ _ _ _ _ _

Both the topological sort and the set inclusion algorithms require

suitable hashing methods with the block IDs to achieve the algorithmic

comp lexity measures stated above.

This subsec tion can be summar ized by noting that the algorithmic

comp lexity of checking for AS1 and A52 of a CHDL program is 0(u) + 0(v)

+ 0(n).

7.3.3 Checking for AS3 and AS4

We require that the adjacency structure of every PROC and WPROC

bl ock be a true partial ordering with a universal lower bound . Also , we

require that each number used as a statement label is unique within its

block.

These requirements can also be checked using a topological sort on

each PROC and WPROC block. The input to the sort is the adjacency

structure of the block. Th~,s corresponds to the role of the list in

Table 7.2: the statement labels correspond to the block IDs , and the order

i n f o rm a t i o n in F I E L I) 3 of t he s t a t emen t s correspond s to the set C~~. Note ,

however , that theSe sets are sets of immediate successors in the i n t e r -

b lo ck partial ordering, whereas the order information represents sets of

immediate pr deccssors in the intra-block partial ordering . This imp l ies

only minor changes to the topological sort algorithm referenced in the

previous subsection . Checking for the occurrence of at least one empty

FIELD3 (this assures us of a universal lower bound ; see Chapter 4) and

unique labels in every PROC and WPROC block can be done with a simp le state-

ment by statement scan. Hence , adopting the arguments of the previous sub-

sec tion , we get the algorithmic complexity of checking the adjacency

structures of a CHDL program as

1=1
1

+ O(q~))

96

Ilere p~ is the number of statement s in the i-th PROC or WPROC block , q.

is the total number of labels in the FIELD3s of those statements and ~

is the number of PROC and WPROC blocks in the program. Notice , as before ,

that p. equals the number of elements (the statement labels) to be sorted ,

and q. equals the number of ordered pairs of labels defining the intra-

blo ck partial ordering.

7.3.’~ Chec king for AS5 and AS6

We also require that in each DPROC block the bit strings in the BiTS

f i..lds of i-very statement are the same length (2) , and that , if there ;~r

statem ents , one of them begins with None . (We assume the APL expres-

siOn of tl~ decod e argument evaluates to a vector of len t i .~.) These

r qu i.re~ssts can be checked by a statement-b y-statement scan. This leads

to a checking algorithm of comp lexity 0(d), where d is the total number

of st it. :nents in all the DPROC blocks of the program.

7 . 3 . i Checki ng for AS7 and AS8

Finally , we require that the mutual exclusion condition in each

MPROC block satisfies the following: Every statement label in the block

must occur in one of the pairs of the mutual exc lusion condition , and

every number in a pair of the mutual exclusion condition of an MPROC must

occur as a statement label. These requirements can be checked by an

al gorithm of comp lexity

2
Z 0(m .),
j=1 ~

where m . is the number of statements in the j-th MPROC block , and ~ the

number of MPROC blocks in the program

97

7.3.6 The Overall Complexity

The results of the five previous subsections can now be combined :

For any CHDL program : n u, n > v and n > d.

Also in the worst case for the adjacency structure of a PROC or

WPROC b lock:

O(q.) = 0(p
2
) (See Figure 7.3)

But n > E p
1

1=1

2 2Therefore n > E p1
i=l

2 2
SlmLlarly n > E m .

j=l -~

Hence , the overall comp lexity is given by:

0(
S
) 1 < s < 2

In most practical cases s 1.

7.4 Conc luding Comments

From the result in Section 7.2 it can be seen that the second purpos e

of this thesis (viz , to specify the CHDL so that SC programs describe

systems which have deadlock-free CSs) has been met. From the results of

Section 7.3 it can further be seen that it has been met without resorting

to a comp lex syntax for the CHDL or limiting its scope (this last point

from thapter 6).

Freedom from dead lock, coupled with a simp le syntax, is achieved

by specifying the CHDL so that : different types of processes are separated

into different blocks ; a process can only be controlled through a single

port (except a mutual exc lusion process), variously seen as a link, out-

put and input place pair of interacting PNs, or a process-call statement

98

WORST
1) A
2) B (1)
3) D- ~--- S (1)

•

• •
• • PROC

N/2) C (1) block

N/2+1) X (2 ,3,• • ,N/2)

• •
• •
• •
N - i) Y (2 , 3, • ,N/2)

1

• S ~~~~~~~~~~ —

2 3 • S • N/2
Associated
Hasse
Diagram

• S .
S..

N/2+1 N/2+2 1 N - i
FP - 5 62 0

Figure 7.3. A Worst Case Adjacency Structure .

- - — - - ~~~ — - - - - - - _______________

99

and block ID pair ; and the process interaction structure is acyclic . The

special case of a mutual exclusion process is specified so that it repre-

sents just a small departure from the above scheme. It can be regarded

as a set of processes that are each controlled through single çorts where

the flow of control through neighboring ports in the set can be mutually

regulated by the setting and resetting of semaphores.

_ _

100

8. HARDWARE IMP LEME NTAT ION OF THE CHD L PROGRAMS

U n t i l now l i t t l e has been said about the logic gate level of imp le-

mentation of the CS modules , of the functional blocks used in the register-

transfers of the DS, and , hence , of the CHDL programs. In this chapter two

approaches to the hardware imp lementation of the CHDL programs are dis-

cussed . The first discusses imp lementing them direc t ly accord ing to the

asynchronous model of Chapter 1. The CS modules of Chapter 2 are con-

struc ted from log ic gates , and the functional blocks of the DS are designed

with addi tional logic to genera te acknowled ge signals. The second discusses

imp lementing them in a pseudo-asynchronous fashion. This is, strictly

speaking , a synchronous realiza tion as a cl ock is used , but it retains many

of the charac ter i s t ics and advantages of the asynchronous model of Chapter 1.

8.1 Asynchronous Implementation

The most obvious method for imp lementing a program in the CHD L , at

the logic gate leve l , is to design the CS modul es as asyncyronous mach ines ,

then interconnect them to form the CS that r e su l t s from app ly ing the trans-

lat ion procedure of Chapter 4. The APL expressions that define the func tional

blocks of the DS can be realized as combinational logic with additional logic

to generate acknowledge signals.

Designing each of the ten modules need onl y be done once , but f i r s t

a s ignall ing convention to def ine the request (R) and acknowledge (A) s ignals

must be chosen .

There are three seeming ly na tura l conventions (see Figure 8.1).

1) Pulse s ignal l ing : R and A can be pulses (see top of f igu re) .

2) Simp le s ignal l ing: R and A can be t r ans i t ions from t to 1 and 1 to 0

(see center of f i gure).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



101

Process *— HProcess *

Pulse 1—i
Signalling L A 

______  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  
______ri....

Simple I I
Signalling L A 

______  _________  ____

Reset I 
_ _ _ _ _

Signalling ~ A 
______  _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  ______

FP- 5573

Fi gure 8.1. Some Signalling Conventions .



102

3) Reset signalling : R and A can be transitions from 0 to 1 which must

be reset to 0 (see bot tom of f i gu re ) .

Most of the modules have already been designed by Peterson using

reset signalling [Pet 74] and by Patil using simp le signalling [Pat 72].

Figure 8.2 shows eight of the ten modules implemented for s imp le s ignal l ing.

The C-element is a one s tate  sequent ia l  machine which can be realized b y

four (two and three input ) NAND gates.  (See [Mu l 63] and EMi l 65] for a

fu r the r  discussion of the C-element and speed independent logic , a log ic

design methodology tha t uses simp le signalling.) The operation of the

modules in Figure 8.2 can be understood from their behaviors in Chapter 2 ,

the simp le signalling convention shown in Figure 8.1 and the operation

equation of the C-element shown at the bottom of Figure 8.2. (The C-

element retains its previous state as long as its two inputs do not agree

with each other , but tends towards the sL.te of the inputs whenever they

are both the same. )  The imp lement-t ion., shown in Figure 8.2 are (except

for the I module) a l l  to be found in [Pat 72) .  We have included them to

give an idea of the comp lexi ty of a system ’s CS at the gate level.  The

gate leve l complexity of the modules when implemented for reset signall ing

is of a s imi la r  order [Pet 74]. Nobody has desi gned any of these CS modules

for pulse s ignal l ing to our knowledge , although they could be designed

using the techni ques of [Ke l 74) .  For various p rac t ica l  reasons pulse

s ignal l ing  is not a very good design choice (in par t icu la r , maintenance of

pulse integri ty makes mono-stables necessary - it has been remarked that

the qua l i ty  of a design is inversely propor t ional  to the number of mono-

stables it uses) .  The design phi losophy for imp lementing modules with

simple signall ing is discussed in [Den 71]~ and general design methods for



104

asynchronous modules are discussed in [Alt 69 1 and [Ke l 74], as was also

noted in Section 2.13. Keller in [Kel 74] also discusses the problem ci

mul t ip le signal changes that can occur at the inputs to some of the modules.

In our case this point is re levant to the design of the ME and SR modules

(not shown in Figure 8 .2 ) ,  where it is possible that both input links have

request signals occurring on them simultaneously,  each of which requires

a d i f f e r e n t  response. This imp lies a form of a rb i t ra t ion  (the J module

can experience s imu ltane ous inpu t changes , but no arbitration is needed in

its case). Keller presents an arbitration module called the arbitrating

test-and-set (ATS) module that can be used to design the NE module.

Figure 8.3 shows the ATS module and a state diagram describing its behavior .

The ME module can then be implemented for simp le signal l ing as shown in

Figure 8.4. The SR module can be imp lemen ted direc tly from the ME as

shown in Figure 8.5. Implementing the ATS module is not straight forward ,

and details can be found in [Kel 74]. In particular , the possibility of

multiple input changes (the occurrence of T and R simultaneously in state i)

can cause any imp lementation to get into a metastable state. This

phenomenon is further discussed in [Cat 66) and [Ch a 73].

Constructing the CS of a system as a network of modules creates a

s t ruc tu re  which is not readi ly  modif ied.  In many systems the capabil i ty

to modify the CS , or the more powerful  capabi l i ty  of emula tion , is required.

In such cases the CS can be implemented directly f rom its PN behavior graph

as a programmable log ic array [Jum 74] or as a diode array [Pat 75] .  The

PN graph can be obtained by f i r s t  app ly ing the translat ion procedure of

Chapter 4 to the C}1DL program to get the network of modules that  form the

CS , then using the Construction 2 .1 and the simplif icat ions of Chapter 2 to

construct  the CS ’s PN from each module ’ s PN. Unfor tuna te ly  both the diode



—- - • -

103

So 
_1

~
o
~1, R 

— 

R j  A

~~~~~~~~~~~~~ S 

_ _ _

T J

D ~~~~~~~ ~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

A34 R3 ‘~‘2~
R2 ~ 2

4rR2
1

Muller C- Element
x Operation Equation

z~~’: zN (x+y)+xy

Figure 8.2. Modules using Simp le Signalling.

- ~~~~~~~~~~~~ _ _ _ _ _ _ _

105

T14~~~— ATS I

T/ I0
T/ T1

I ri it ia
State

FP - 5675

Figure 8.3. The ATS Module.

- — ——~~~--~~~~~~~~~~~‘ - _ - - _ - - n-r. -~~~~~fl - - .
- — --~~~~~~s ~~~~~~~~~~~~~~~~~~ -~~~~ -~~~~ _-——

~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

106

R~~~~~ A~ R2 A 2

I ATS 1 ATS~~
_ _ _ ~ T

R3 43 R4 44

FP- 5576

Fi gure 8.4. The ME Module (Simp le Signal l ing) .

L ~~~~~~. ~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _

- - - - - - ~~~~~~~~~~~ - -~~~~~~~~~-- -- - -— -~~~~~~~~- - -~~~~~

107

i T 1 2 1

ME

_
4

43 R3 FP-5577

Figure 8.5. The SR Module (Simp le Signal l ing) .

L . ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~ -

108

array and the programmable array are very i n e f f i c i e n t real izat ions. The

diode array uses a flip-flop plus additional logic for each place and each

t r a n s i t i o n in the PN , over and above the diodes. The programmable logic

array uses a flip-flop , a C-element p lus additional logic in each pro-

grammable ce l l of the array , many of which are programmed just to pass

signals between their boundaries without modifying them. Both arrays need

external arbiters to implement the equivalent of the SR and ME modules

(reducing somewhat their facility for being modified). The programmable

array also needs to be able to imp lement the equivalent of the D and I

modules. This can be done with sonic simp le (also programmable) logic on

the inputs and outputs of the array .

As noted at the beg inning of this section , the f unctional blocks

require additional log ic to generate acknowled ge signals. To illustrate

how this can be done two examp les are shown in Figures 8.6 and 8.7. In

both reset signalling is assumed. The first shows a simple register-

transfer in a bus structured environment , and the second a register-

t r a n s f e r which results in addition or subtraction (Zi— X±Y). The operation

of the f i r s t should be c lear f rom the figure - equivalence gates are used

to detect when the content of the destination register is the same as that

of the source register. The operation of the second is a little more

comp licated . It is a modification of a carry comp letion adder (see [Gsc

75] for d e t a i l s) . The outputs of the adder /subt rac tor that indicate a

carry (C) or no carry (N) are also used to generate the acknowledge s ignal .

Correct operation is assured only if A does not occur before the result of

the adder/subtractor is latched into the Z register. This need to analyse

the timing of the func t iona l blocks to assure correct operation can lead

109

DestinationBus —
.

S S

S S

S S
-

_ _ _ _ _ _ _
S . .

S . .
— — -

_____ ____________
S S S

Source 1

R J L R A

Logic for T~(transmission gate)
b

~

O~ high impedance

FP 5578

Figure 8.6. Acknowledge Signal Generation 1.

-

~~~~~~~~~~~~

110

x i Y~
C 1 X Y , + C11 (X , + Y , )

~~~ ~~~~~ N11 (X 1 +’i~

~ ~~~~~ — Full Adder ! Subtractor Unit
z i

LXJ [
~
-j

j

_

Izi+1I L4LJ Eul

~~Y
j1 RS

~

L
A f l

A EP-5579

Figure 8.7. Acknowled ge Si gnal Generat ion 2.

111

to a comp lex design procedure (the same considerations app ly when designing

the CS modules , as is pointed out in [Den 71] ; however , the CS modules onl y

have to be designed once whereas each new CHD L program may have many new

register-transfers to be designed). The major problem is avoiding delay

hazards which can cause premature acknowledge signals to occur . A

systematic method of design which results in designs that are free of

delay hazards uses a spacer word between each data word .* Unger in [Ung

69] d iscusses this design method in detail. Although such a systematic

approach to DS desi gn is des irable , the loss in through put ra te as a

result of including spacer words every other word in the data flow brings

into question the speed-up gained at the register-transfer leve l by

operating asynchronously. It should be born in mind that only register-

transfers whose time of opera tion ar e very data dependent (i.e. not simple

“move con tents of register A to register B” type register-transfers) result

in a fas ter average time of opera tion b y ind icating their own comp letion

rather than having the DS assume a worst case bound .

One final note on the asynchronous implementation concerns fault

tolerance. If the CS modules are imp lemen ted for simp le signall ing , any

CS constructed from them wi l l au tomat ica l ly hal t if a s tuck-at f a u l t occurs

on the wires connecting the NOT5, EORs , C-elements and ATS modules to-

gether. If the CS modules are imp lemented for a reset signall ing using

the designs given in [Pet 74) , any CS constructed from them wi l l ha l t if

a s tuck-at f au l t occurs on the wires interconnect ing the modules. To make

the DS f a u l t to lerant many of the usual schemes can be used (see [Sel 68)

*Arrival of a spacer word at the output of a funct iona l b lock indicates
that the combinational logic has been f lushed of any delayed log i c.s i gnals
and , hence , is read y to receive new input da ta .

112

for examples). However , using rn-out-of-n codes offers some interesting

bonu ses , as the self-checking checkers that can be devised for such codes

(see [Smi 7 7 J for more d e t a i l s) can also be used to generate acknowledge

signals. If a fault causes a non-codeword , or the checker fa i l s , no

acknowled ge signal is returned to the -CS resulting in its halting .

8.2 Pseudo-asynchronous Implementation

In the previous section we noted some drawbacks associated with

asynchronous implementation. These were :

I) The DC can be difficult to design because acknowledge

signal generation must be implemented. Fu rthermore ,

solutions to this problem do not lend themselves to

efficient realization in standard logic families , as these

are oriented towards synchronous environments.

2) The CS canno t be imp lemented efficiently in a way that it

can be readily modified .

3) Simu ltaneous mul tip le inp ut changes on ME and SR modu les

can result in non-standard operation of logic elements

used in their implementation.

These drawbacks can be overcome by using a central clock to regulate

si gnal changes with in a system, while still retaining the essentially

asynchronous action described by the CHDL. We use the term pseudo-

asynchronous (PA) to describe such imp lementations.

The system model for PA imp lementat ion is shown in Figure 8.8. It

is based on -one proposed by Glushkov in [Glu 65] and comprises two

cooperat ing f i n i t e s tate machines. One , the CS , is a Meal y machine , and

the other , the DS , is a Moore machine . The inputs to the CS are shown

as the vector X , and they represent information about the state of the DS.

~~~~~~~~~~~
_ _ -. .-~

_— _ -
~~
=_

~~~~~--
_ _ _—

~
-
~~~~~~~~~~~~~~~~

--_
~
—— - _ _ -



113

43~~f_ICIockl

. (A Mealy
_______ _______ Machine)

(Corn b ~not , ono
Logic )

y

Inputs DS Outputs
to I~ D from

System (A Moore Machine) System

FP -5580

Figure 8.8. The PA System Model.



_ _ _ _ _

114

Based on th is  information and on its own state (given by 
~ l through s )

the CS machine outputs  a set of control  signals , shown as the vector Y.

These are gating signals for  synchronous r eg i s t e r - t rans fe r s .  No acknow-

ledge signals are gen era ted by the DS logic ; instead each register-

transfer is allocated a fixed number of basic clock cycles. The number

al located is based on the worst  case t ime for the reg is t e r-t r a n s fer .

Reca l l ing  the l i s t  of drawbacks associated wi th  the asynchronous

imp lementation , we see that the above PA model overcomes them as follows :

1) The DS no longer needs to inc lude  acknowledge signa l logic

and can be cons truc ted in an e f f i c ient way from ava ilable

logic families with the aid (if necessary) of the many

automatic design pa ckag es a imed at conven tional func ti onal

block imp lementation .

2) The CS can be made easy to modify by real izing C (see

Figure 8.8) as a PLA, a R~ 4, or, if frequent emulation

is req uired , a RAN.

3) The multi p le inpu t change pr oblem , that can result in non-

standard opera t ion of logic elements does not occur in a

synchronous environment . However , the problem still occurs

at the interface between the system and its environment ,

since signals that meet at this boundary are asynchronous

with respect to one another.

Never theless , using a PA imp lementation has drawbacks of its own.

These are as follows :

1) Operations at the register-transfer level take a fixed

worst case time period.

- - - -



--

115

2)  The fault tolerance of the asynchronous imp leme ntat ion

to many stuck-at faults is lost.

3) Consideration must be given to the layout of the log ic

ga tes , so that clock skewing, due to line del ays , does

not occur. Layout (in particular maximum line length)

also limits the speed of the clock and hence of the system.

Without going into a general translation technique we shal l  present

some examp les of how the Mealy machine that imp lements the CS of a system

des cribed by a CHDL program can be derived from that program.

The states of the CS(S
1 
through s )  are held in a set of master-

slave JK flip-flops (JKFF). Figure 8.9 shows the PA signalling convention.

ln the case of a register-transfer there is no acknowled ge - a counter

is used to measure the time out for the register-transfer , and comp letion

of the count serves in l ieu of an acknowledge. (The truth table of the

JKFF is included in Figure 8.9 for convenience.)

A log ic circuit useful in understanding the examp les that follow

is the “sequen t  i a l  AND ” ($). Its operation is shown in Figure 8.10. its

diagrammatic representation is shown at the top , its logic realization

is shown in the center , and a timing diagram showing its operation under

the three possible sets of inputs is shown at the bottom. It outputs a

si gnal on z af ter one has occ urr ed on both x and y. (We assume that any

two consecutive signals on x (y) are separated by one on Y ( 9 ) . )

Figure 8.11 shows the PA imp lementation of the CS of a PROC block.

Each s ta tement  is associated w i t h  at least one JKFF . The JKFFs are the

boxes label led P , 1, 2 , 3.1 , 3.2 and 4. For c l a r i t y  the cloc k l ines are

omitted , the input at the top of each box is assumed to be J , and the



____ - -  -~~~~

116

n~~L
_ _  

J K Q

~ Q 
~ 0 0

• ~ 
_ _  

0 1. 0
K Q ~~r 1 0 1

1 1

• Clock

Clock 
_ _  _ _fl

~

_fl_
R 
_ _  _ _ _  _ _ _ _

A_ _

FP- 5~81

Fi gure 8.9. PA Signal l ing Conventions .

L~~. .  •~~~~~~~~~~ _ •~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~~~ _ ___



117

:J I

~~~~~~~~~~~EE:~~
:

-
~~~~ z

Clock 

~~~~~~~~ — — — ______ _ _ _ _ _

x J I _ _ _

y
~~~~~~~~~~~~~~~~~ _ _ _ _

x (y) J~~~~1~~~~~ _
• y(x) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I I
-

z 
_ _ _ _ _ _ _ _ _ _  ——— I I

FP - 5582

Figure 8.10. The Sequential And . 

. • - - • •~~~~~~~~~~~~~~~~~~~~



118

PBLOCK
1) Rk—R2
2) MBLOCK 1iJ
3) AC-~--AC + R2 (1,2)
4) DBLOCK (2 )

R1~ -R2 MBLOCK R MBLOCKA 4C-~-AC + R2 DBLOCK R DBLOCK 4

~~~~~~~~~~~~~

L _

______________________ FP- 5583

Figure 8.11. PA Implementation of a PROC Block.

_ _

119

output at the top of each box is assumed to be Q. A signal (see R,

Figure 8.9) at I starts the machine we have called PBLOCK by gating a

register-transfer , Rl +- R2, in i t ia t ing another machine cal led MBLOCK with

signal MBL’1CK.~, and setting the JKFFs P. 1 and 2. A set JKFF P indicates

that machine PBLOC K is active , a set JKF F 1 indicates that the reg i s te r -

t r a n s f e r Rl 8— R2 is active , and a set JKFF 2 indicates that machine MBLOC K

is active . JKFF 1 is reset after one clock period : this is the time for

operation allocated to the reg is te r - t ransfer. JKF F 2 is reset a f t e r the

inputs to the AND gate J go to logic I. These are labelled MBLOCKA and

are the Q outputs from the JKFFs that would be used to implement the CS

• of MBLOCK. (They stand in the same relation to 2 as the inputs to AND

gate K stand to P.) The signal MBLOCK
R

corresponds to R of Figure 8.9,

and the output s of AND gate J correspond to A of Fi gure 8.9. The

r eg i s t e r - t r ans fe r AC I— A C + l receives a ga ting signa l from the outpu t of

the $ gate as soon as either the MBLOCK machine is done , or the time

al located the r e g i s t e r - t r a n s f e r R 1 4— R2 is up , whichever take s longest .

The reg i s t e r - t r a n s f e r is al located two clock periods to comp lete , which

are counted by JKFF5 3.1 and 3.2. The signal from J also starts

machine DBLOC K , set t ing JKFF as it does so. When DBLOC K is done

JKFF 4 is reset in a similar fashion to JEFF 2. When PBLOCK is done the

JKFF5 1,2 , 3 , 1, 3.2 and 4 are reset . This enables AND gate K which causes

P to be reset a f t e r the next clock pulse. A reset JEFF P indicates

that PBLOC K is done .

Figure 8.12 shows the PA implementation of the CS of a DPROC b lock.

Its operation should be clear from the previous discussion. The comb inationa l

logic with inputs x 1 and x0 direc ts the s tar t signal to the appropriate

120

DBLOCK
ABC R •aBCA Decode (x 1x0) g~

fD
~~~~ 

00 =~ ABC
11 ~~~R0-~--R1
None : Null

A 

R 0 ~~~
— Ri

11•1 11.

FP- 558 4

Figure 8.12. PA Implementation of a DPROC Block.



_ _ _ _ _ _ _ _ _ _ _ _ _ _

121

submachine . Notice that  the r eg i s t e r - t r ans fe r  R0 4-Rl has been allocated

two clock periods. In the case of x1
1 x0 l JEFF D is set and then reset

a f t e r  the fol lowing clock pulse - a Null  process.

Figure 8.13 shows the PA implementation of the CS of a WPROC block.

Again , its operation should be clear from the previous discussion. The

output signal from AND gate L is used to reinitiate the machine if y = I

is true .

Figure 8.15 shows the PA implementation of the CS of a TPROC block.

The inclusion of the $ gate with its JEFF initially set (see Figure 8.10)

allows machine XYZ to be active while the process of which TBLOCK

(represented by JEFF T in the imp lementation) is a par t, may be reinitiated .

This reinitiation may proceed until just before TBLOCK. It must then

wait until XYZ is done. Thus the overlap never goes beyond one level.

Figure 8.14 shows the PA implementation of the CS of an MPROC block.

We have arb itrar ily given priority to process TWO. This is determined

by gate M.

In a comp le te CS , many of the JEFF5 are redundant. The only

essential ones are those associated with $ gates and the register-transfer

timing. The redundant ones can be eliminated or retained for use in

system diagnosis. The JKFF5 which form the state vector , 
~l 

through S
n’

may be regarded as a control status word (CSW) which must be initialized

to start the machine (usually most of the JKFFs are reset , but those in

$ gates associated with TPROCs are set). This CSW may also be set to

intermediate values as part of a diagnostic routine.

It can be seen from this brief sketch of PA implementation that

many of the characteristics of the asynchronous model are retained,



_ _ _ _  _ _ _  _ _ _ _ _ _ _ __ _

122

WBLOCF<
While (y) 

~.Q
1) RED
2) GREEN
3) BLUE (1,2)

REDR REDA GREENR GREENA BLUER BLUEA

_

_  

_

— 

- sses

Figure 8.13. PA Implementation of a WPROC Block.



- • -~~~~~~~~~~~~~~~ --~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~~~ - -

124

MBLOCK
Mutex (1,2)

1)ONE
2) TWO

ONER ONE4 TWO4 TWO R

M~~
”

FP - 5587

Figure 8.15 . PA Imp lementat ion of a MPROC Block.



- ~~~~ —~~- • _
~ - _ _ ;_ - _ -- --••- _ - _ - • - - - - - - _ _

125

except that  t ime is now defined d i sc re te ly.  The PN graph model of behavior

s t i l l  app lies , as do the conc lusions of Chapters 6 and 7. Hence PA

imp lementat ions are also deadlock-f ree .

Finally ,  we make a concluding observation. If our f i n i t e  s tate

machine were designed using a state table , the notion of deadlock would not

arise. It would be easy enough to ensure that no trap states exist. How-

ever , this method is all but impossible for any but the simp lest machine .

Hence, other representations and methods are required to design the finite

s ta te  machine . With these the notion of deadlock arises. In a sense then,

deadlock can be viewed as a function of the methods used to design and

represen t the machine.



126

9. COMPARISONS TO OTHER CHDLS AND OTHER APPLICAT ION S

In this chap ter other app lica tions of some of the ide as develop ed

in this thesis , as a resu lt of specif ying the CHD L , are discussed. Also ,

our approach to CHDLs is compared to others.

9.1 Other Applications

Several peop le have suggested the use of fork , 
~~~~ 

and ~~~~~ opera tions

(or their equivalent) for use in high leve l programming language s to enable

programmers to write programs in which the potential for multiprocessing

can be exp l ic i t ly communicated to the compiler (see [Con 63 1, [And 65 1, [Op I

65] and [Den 66]). The use of fork is analogous to the effect of a W

modu le on the flow of control , and the use of j~~j~ and ~~~~ is analogous

to the effect of a J module on the flow of control.

These operations allow the programmer to specify a control flow which

can deadlock. By adopting a programming discip line similar to the one we

have used in the syntax of the CHDL, such situations can be avoided.

Many programmers consider that the use of fork , J2~~
and

~~~~ 
in high

level programming languages obscures the underly ing al gorithm , that a

program specifies, by representing the algorithm in a non-sequential fashion

(see [Wir 66]). To accommodate this criticism and still retain the capa-

bility of multiprocessing , it is necessary to automatica~ ly detect segments

of a program tha t can be executed concurr ent ly, and have some mechanism a t

the assemb ly language leve l , or at the f i rmware leve l , for expressing con-

currency. If this mechanism uses operations similar to fork , j 2j~ and ~~~~

we can aga in impose a discipline on usage to ensure that control flow does

not deadlock. As a footnote to this discussion on programming language



127

constructs that facilitate multipr oce ssing,  it is interesting to note that

the MPROC block of the CHDL is analogous to a simp le for m of monitor

(see [Hoa 74]).

Finally ,  there are two obv ious c and idates for any design me thodo logy

that includes something similar to the CHDL. These are the RTMs (Register-

transfer modules) of the Digital Electronics Corporation (see [Bel 72]),

and the Macromodules of Washington University (see [Cla 67]). Both of

these are sets of asynchronous modu les which con tain e lements of both CS

and DS, that can be interconnected to form custom systems . The types of CS

that they can produce are similar to those possible with the CS modules of

Chapter 2. Hence , there is a need for an interconnection discip line , that

could be impos ed by a CHDL , to ensure that control flow does not deadlock.

In the case of the RTMs, some researchers have suggested a design methodo-

logy that involves designing the target system as an interconnection of

RTMs , then anal yzing the resulting control flow using PNs (see [Hue 75]).

Such an approach leads , in general , to comp lex analyses just to confirm

that the control flow is free of potential deadlock. A further drawback

als o resul ts, in that such analyses do not indicate how to correctly re-

de sign a system which has been found to have a potential deadlock.

9.2 Comparisons to Other CHDLs

There are currently no CHDLs that are suitab le for specifying multi-

processing systems. The major weakness of present CHDLs, in this respect ,

is the very limited nature of the CS5 that they can describe . As a case in

poin t, consider two of the most popular CHDLs, viz. ISP (see [Be! 71]) and

AHPL (see [Hil 73]). Both have only very simp le CS constructs. To use

either of them to describe overlapp ing or mutually exc lusive processes

would be awkward , as all of the coordination would have to be done through



a system of flags declared in the DS. Furthermore , they can only describe

simple series/parallel type concurrency. Nevertheless , they could easily

be improved , from a multiprocessing poin t of v iew , by adding a few

appropria te cons tructs: semaphores; queues in the control flow ; a more

flexible method of representing concurrency . There is an early examp le of

a CHDL which comes closer to being suitable for specifying multiprocessing

systems , and that is the Computer Compiler (see (Me t 66]). This, however ,

can describe systems with po t en t i a l  deadlock in their CS. 

_—~~ -— -——- —. -— -~-—-.—— _—-_ — — --=• =---_• -~~~-- -



129

10. CONCLUSION

To recap itu l a te , the two major purposes of this thesis were :

1. To develop a CHDL with sufficient scope to describe multiprocess ing

systems.

2. To specify the CHDL so that SC programs describe systems which

have dead lock-free CSs.

A CHDL was developed in Chapters 2, 3, and 4 , and it was shown in

Chapters 6 and 7 that it does , in fact , achieve these purposes. To motivate

the use of the CHDL it was used to design a small system in Chapter 5. Actual

gate level implementations , both asynchronous and synchronous , were discussed

in Chapter 8. Chapter 9 discussed some extensions of the thesis and commented

on other work.

One gener al point of note is the hierarchical nature of the CHDL t ha t

was pointed out throughout this thesis. This follows as a consequence of

the observation made in Chapter 6, viz , that the CHDL satisfies the Structure

Theorem of [Mu 721 and , hence , the Top Down Corollary : programs can be

w r i t t e n  or read top down . For the user this means there is a convenient

relationship between the CHDL text (static) and the intended operation of

the system it describes (dynamic).

In the ~ystem model of Figure 1.1 we viewed a digital system as composed

of a CS and DS. This thesis has been concerned mainly  wi th  the CS aspects

of a CHDL. Further research cou ld be carried out on the DS aspects of a

CHD L , with special  reference to the needs of multiprocessing. As was noted

in Section 5.3, a formalism for data type definition is needed that is suit-

able for hardware data objects (busses , reg is ters , subf i e ld s of reg isters ,

etc.). Of particular interest would be a method which , a ided b y the 

-S- - -C -~~~~~~~ - - - - -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



130

for mal ism for da ta d e f i n ition , would facilitate the design of systems with

deterministic DSs. There are two approaches that may be taken. The first

is preven tative , i.e. specify the CHDL so that it cannot describe non-

deterministic systems . This is the approach that we have adopted in regard

to deadlock. The second is curative , i.e. the DS is examined , after the

des ign pr oces s, for sources of non-determinism . In the opinion of the

au thor , prevention is better than cure , but it should not be undertaken to

the point of limiting the scope of a CHDL until it becomes useless.

______________________________________________ 
~~ —~~- — — _ •  -



-- -~~~~~~~~~~~~~--
__-~~~~~--- 

131

REFERENCES

Alt 69 Altman , S. H., and A. W . Lo , “Systematic Design for Modular
Real ization of Cort~ rol Modules ,” 1969 SJCC , AFIPS Conf. Proc.,
Vol. 34, pp. 587-595 , 1969.

Al t 70 Al tman , S. M., and P. J. Denning, “Dec omposi tion of Con trol
Networks ,” Rec. of the Proj. MAC Conf. on Concurrent Systems
and Para l l el Comput ation , pp. 81-92 , 1970.

And 65 Anderson , J. P., “Program Structures for Parallel Processing,”
CACM , Vol. 8, No. 12 , pp. 786-788 , Dec. 65.

And 67 Anderson , D. W., F. J. Sparacio , and R. M. Tomasulo , “The IBM
System/360 Model 91: Machine Philosophy and Instruction-Handling ,”
IBM Jour, of R&D, Vol. 11 , No. 1 , pp. 8-24, Jan. 67.

Aze 75 Azema , P . ,  M. Diaz , and J. E.  Doucet , “Mul t i l eve l Descrip t ion
Us ing  Petri Nets ,” Proc . 1975 m t .  Symp. on Computer Hardware
Description Languages and their App lications , pp. 188-190,
Sept. 75.

Bar 75 Barbacci , M. R. , “A Comparison of Regi~-ter Transfer Languages for
Describing Computers and Digital Systems ,” IEEE TC , Vol. C-24,
No. 2, pp. 137-150 , Feb. 75.

Be l 71 Bel l , C. C., and A. Newell , Computer Structures: Readings and
Examples , Mc Graw-Hill , New York , 71.

Be l 72 Be l l , C. C., J. L. Eggert , J. Grason , and P. Williams , “The
Description and Use of Register-transfer Modules (RTM s), ”
IEEE TC , Vol. C-2l , No. 5, pp. 495-500, May 72.

Br u 7 1 Bru no , J., and S. Altman , “A Theory of Asynchronous Control
Networks ,” IEEE ‘fC , Vol. C-20, No. 6, pp. 629-638, Jun. 71.

Cat 66 Catt , I., “Time Loss Through Cating of Asynchronous Logic Signal
Pulses ,” IEEE TC , Vol. EC—1 5 , No. 1, pp. 108-111 , Feb. 66.

Cha 73 Chancy , T. J., and C. E. Molnar , “Anomalous Behavior of Synchronizer
and Arbiter Circuits ,” IEEE TC, Vol. C-22 , No. 4, pp. 421-422 ,
Apr .  73.

Cla 67 Clark , H. A., “Macromodular Computer Systems ,” 1967 SJCC , AFIPS
Conf. Proc., Vol. 30, pp. 335-336 , 1967.

Corn 71 Commoner , F., A. W. Holt , S. Even, and A. Pnue li , “Marked Directed
Grap hs ,” J. Comput. Syst. Sci., Vol. 5, pp. 511-523 , 1971.

Con 63 Conway , M. E., “A Multi pr ocessor Sys tem Des ign ,” 1963 FJCC , AFIPS
Conf. Proc ., Vol. 24, pp. 139-146 , 1963. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


132

Den 66 Dennis , J. B., and E. C. Van Horn , “Programming Semantics for Multi-
programmed Computations ,” ~~~~ Vol. 9, No. 3, pp. 143-155, Mar. 66.

Den 70 Dennis , J. B., “Modular , Asynchronous Control Structures for a High
Performance Processor ,” Rec. of the Proj. MAC Conf. on Concurrent
Systems and Parallel Computation, pp. 55-80, 1970.

Den 71 Denn is , J. B., and S. S. Patil , “Speed Independe nt Asynchrono us
Circuits ,” Proc. 4-th Hawaii Int. Conf. on Syst. Sci., pp. 55-58,
1971.

Fal 64 Falkoff , A. D., E. E. Iverson , and E. H. Sussenguth , “A Formal
Description of System/36O,” IBM Syst . Jour., Vol. 3, No. 3, pp.
198-262 , 1964.

Fig 73 F igueroa , M. A., Analysis of Languages for the Design of Digital
Computers , CSL Report R-611 , May 73.

Fr a 75 Fra nt a , W . R.. and W. K. Giloi , “APL*DS : A Hardware Description
Language for Design and Simulation ,” Proc . 1975 m t . Symp . on
Computer Hardware Description Languages and their App lications ,
pp. 45-52 , Sept. 75.

Fri 67 Friedman , I. D., “ALERT : A Program to Compile Logic Designs of
New Computers ,” Digest 1st Annual IEEE Comp. Conf., pp. 128-130 ,
Sept. 67.

Fri 69 Friedman , T. D., and S. C. Yang, “Methods Used in an Automated
Logic Design Generator (ALERT),” IEEE TC , Vol. C-l8, No. 7,
pp. 593-613 , Jul. 69.

Gl u 65 Cl ushkov , V. M., “Autom ata Theory and Structural Design Problems
of Digital Machines ,” Kibernetica , Vol. 1 , No .1, pp. 3-11 , 1965.

Gsc 75 Gschwind , H. W., and E. J., McCl uskey , Design of Digital Computers ,
Springer-Verlag , New York , 1975.

Hei 76 Heimerdinger , W. L., and L. A. Jack , “A Graph Theoretic Approach
to Fault Tolerant Computing, ” 1975-76 Annual Report AFOSR
Contract No. F44620-75-C-0053 , Mar. 22, 1976.

Hil 73 Hill , F. J., and C. R. Peterson , Dig i ta l Systems : Hardware
Organization and Design , New York , 1973.

Hoa 74 Hoare , C . A . R . , “Moni tors : An Operating System St ruc tur ing Concept , ”
CACM , Vol. 17, No. 10, Oct. 74.

Hol 68 Holt , A. W . , Final Report of the Informat ion System Theory Project ,
Tech. Report RADC-TR-68-305, Rome Air Development Center , New York,
1968.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



133

Hue 75 Huen , W. H., and D. P. Siewiorek , “Intermodule Protocol for
Register Transfer Level Modules: Representation and Analytic
Tools ,” Proc. 2-nd Annual Symp. on Computer Architecture,
Houston , TX., Feb. 75.

Jum 73 Jump,  J. R., and P. S. Thiagarajan , “On the Equivalence of
Asynchronous Control Structures ,” SIAM Jour. Comp., Vol. 2,
No. 2, pp. 67-87, Jun. 73.

Jum 74 Jump , J. R., “Asynchronous Control Arrays ,” IEEE TC, Vol. C-23 ,
No. 10, pp. 1020-1029, Oct. 74.

Kel 74 Keller , R. M., “Towards a Theory of Universal Speed-Independent
Modules ,” IEEE TC, Vol. C-23 , No. 1, pp. 21-33, Jan. 74.

Kim 69 Knuth , D. E. , The A rt of Computer Programming, Vol. 1: Fundamental
Al gori thms, Addi son-Wesley, Read ing, MA , 1969.

Knu 73 Kn uth , D. E. , The Art of Computer Programmjng, Vol. 3: Sorting
and Searching, Addison-Wesley , Reading, MA , 1973.

Knu 74 Knuth , D. E., “Structured Programming with ~~~~ Statemen ts ,”
Computing Surveys , Vol . 6, No. 4, Dec. 74.

Met 66 Metze , C., and S. Seshu , “A Proposal f or a Compu ter Comp iler ,”
196 6 SJCC , AFIPS Conf. Proc., Vol. 21 , pp. 121-129 , 1966.

Mil 65 M i l l e r , R. E., Switching Theory , Vol. II, John Wiley , New York ,
1965.

MU 72 Mi ll s, H., Mathematical Foundation for Structured Programming ,
FSC72-6012 , Federal Systems Division , IBM Corp., Gaithersburg, MD,
Feb. 72.

Mud 75 Mud ge , T., “Specify ing a Design Language for Digital Sys tems ,”
Proc . 13- th Annual Allerton Conf. on Circuit and System Theory ,
pp. 905-915 , Oct. 75.

Mud 77 Mudge , ‘1., A Design Language for Modular Asynchronous Control
Structures , CSL Report R-759 , Feb. 77.

Mul 63 Mu l ler , D. E., “Asynchronous Logics and App lication to Information
Processing,’~ Switching Theory in Space Technology , Stanford Univ.
Press , Stanford , CA , 1963.

Opl 65 Opler , A., “Procedure-Oriented Language Statements to Facilitate
Paralle l Processing,” CACM, Vol. 8, No. 5, May 65.

Pat 72 Pa t il , S. S . ,  and J. B. Dennis , “The Description and Realization
of Dig ital Sys tems ,” COMPCON 72, Proc. IEEE Comp. Conf., pp. 313-
316 , Sept . 72.

Pat 75 Patil , S. S., An Asynchronous Lqgic Array , Comp. Structures Group
Memo 111-1 , Proj. MAC , MIT , Feb. 75.

—~~~



134

Pet 66 Petri , C. A., Communication with Automata , Supp l. 1 to Tech. Report
RADC-TR-65-377 , Vol.  1, Rome Air Development Center , New York ,
1966.

Pet 73 Peterson , J. L. ,  Modellii~g of Paral le l  Systems , Ph.D. Thesis,
Dept. E.E. Stanford Univ., Stanford , CA , Dec. 73.

Pet 74 Peterson , J. B. ,  On High Level Digital System Design, CSL Report
R-653, Jul. 74.

Pro 75 Proc. 1975 Int. Symp. on Computer Hardware Description Languages
and their Applications , IEEE , New York , 1975.

Sel 68 Sellers , F. F., M. Y. Hsiao, and L. W. Bearnson , Error Detecting
Logic for Digital Computers , McGraw-Hill, New York , 1968.

Smi 77 Smith , F. M., Creating Simulators from a Design Language, CSL
Report R-773 , Jul. 77.

Tom 67 Tomasulo, R. M., “An Ef f ic ient Algori thm for Exp loiting Multip le
Arithmetic Units,” IBM Jour, of R&D, Vol. 11, No. 1, pp. 25-33,
Jan. 67.

Ung 69 Unger , S. H., Asynchronous Sequential Switching Circuits,
John Wiley , New York , 1970.

Wir 66 W ir th , N., ~‘A Note on ‘Program Structures for Parallel Processing ’,”
CACM , Vol. 9, No. 5, May 66.

~



135

VITA

Trevor Nige l Mudge was born in London , England , on November 28 , 1947.

He received a B.Sc. degree in Cybernetics from the University of Reading in

England in 1969, and an M.S. degree in Computer Science in 1973 from the

University of Illinois. He was a research assistant with the Information

Engineering Laboratory at the Department of Computer Science from 1969-

1974. From 1974-1977 he worked with the Digital Systems Group at the

Coordinated Science Laboratory.


